Water limitation as a driver of species richness decline in global grasslands under nutrient addition

IF 3.9 2区 农林科学 Q1 AGRONOMY
Hailing Li, Josep Peñuelas, Scott L. Collins, Jordi Sardans, Kailiang Yu, Chao Song, Juan Chen, Jian-Sheng Ye
{"title":"Water limitation as a driver of species richness decline in global grasslands under nutrient addition","authors":"Hailing Li, Josep Peñuelas, Scott L. Collins, Jordi Sardans, Kailiang Yu, Chao Song, Juan Chen, Jian-Sheng Ye","doi":"10.1007/s11104-025-07253-5","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Background and aims</h3><p>Nutrient addition increases plant aboveground production but causes species richness decline in many herbaceous communities. Asymmetric competition for light and detrimental effects of nitrogen have been shown to cause species richness decline in mesic ecosystems. However, it remains unclear whether and how other limiting factors may also play a role in the decline of species richness, especially in ecosystems where soil water could be more limiting.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>We conducted a meta-analysis of &gt; 1600 experiments on nutrient and water addition across grasslands worldwide.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>We find that nitrogen addition, alone or combined with other nutrients, significantly increases aboveground production but decreases species richness. However, water addition can avoid species loss when nutrients were added, indicating that water is a crucial limiting resource in driving species richness decline under nutrient addition. Overall, water limitation may be the primary driver of species richness decline under nutrient addition in approximately 70% of global grassland areas where mean annual soil water content is ≤ 30%. Therefore, as nutrient availability increases in global grasslands, soil moisture limitation may be responsible for the decline of species richness in regions.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Our study quantifies the soil water threshold below which plant species is mainly driven by water limitation, and highlights a novel and widespread mechanism driving species richness decline in global grasslands under nutrient addition.</p>","PeriodicalId":20223,"journal":{"name":"Plant and Soil","volume":"46 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant and Soil","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11104-025-07253-5","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Background and aims

Nutrient addition increases plant aboveground production but causes species richness decline in many herbaceous communities. Asymmetric competition for light and detrimental effects of nitrogen have been shown to cause species richness decline in mesic ecosystems. However, it remains unclear whether and how other limiting factors may also play a role in the decline of species richness, especially in ecosystems where soil water could be more limiting.

Methods

We conducted a meta-analysis of > 1600 experiments on nutrient and water addition across grasslands worldwide.

Results

We find that nitrogen addition, alone or combined with other nutrients, significantly increases aboveground production but decreases species richness. However, water addition can avoid species loss when nutrients were added, indicating that water is a crucial limiting resource in driving species richness decline under nutrient addition. Overall, water limitation may be the primary driver of species richness decline under nutrient addition in approximately 70% of global grassland areas where mean annual soil water content is ≤ 30%. Therefore, as nutrient availability increases in global grasslands, soil moisture limitation may be responsible for the decline of species richness in regions.

Conclusion

Our study quantifies the soil water threshold below which plant species is mainly driven by water limitation, and highlights a novel and widespread mechanism driving species richness decline in global grasslands under nutrient addition.

养分添加下全球草地物种丰富度下降的驱动因素——水分限制
背景和目的添加养分增加了植物地上部产量,但导致许多草本群落物种丰富度下降。对光的不对称竞争和氮的有害影响已被证明是导致中介系生态系统物种丰富度下降的原因。然而,目前尚不清楚其他限制因素是否以及如何也可能在物种丰富度的下降中发挥作用,特别是在土壤水分可能更具限制的生态系统中。方法对全球1600个草原养分和水分添加试验进行meta分析。结果氮素单独或与其他营养物联合施用显著提高了地上产量,但降低了物种丰富度。而在添加养分的情况下,水分的添加可以避免物种的损失,说明在养分添加的情况下,水分是驱动物种丰富度下降的重要限制性资源。总体而言,在全球约70%的年平均土壤含水量≤30%的草原地区,水分限制可能是物种丰富度下降的主要驱动因素。因此,随着全球草原养分有效性的增加,土壤水分限制可能是导致区域物种丰富度下降的原因。结论本研究量化了土壤水分阈值以下植物物种主要受水分限制驱动,揭示了养分添加下全球草原物种丰富度下降的一个新的普遍机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant and Soil
Plant and Soil 农林科学-农艺学
CiteScore
8.20
自引率
8.20%
发文量
543
审稿时长
2.5 months
期刊介绍: Plant and Soil publishes original papers and review articles exploring the interface of plant biology and soil sciences, and that enhance our mechanistic understanding of plant-soil interactions. We focus on the interface of plant biology and soil sciences, and seek those manuscripts with a strong mechanistic component which develop and test hypotheses aimed at understanding underlying mechanisms of plant-soil interactions. Manuscripts can include both fundamental and applied aspects of mineral nutrition, plant water relations, symbiotic and pathogenic plant-microbe interactions, root anatomy and morphology, soil biology, ecology, agrochemistry and agrophysics, as long as they are hypothesis-driven and enhance our mechanistic understanding. Articles including a major molecular or modelling component also fall within the scope of the journal. All contributions appear in the English language, with consistent spelling, using either American or British English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信