Gaussian orbital perturbation theory in Schwarzschild space-time in terms of elliptic functions

IF 3.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Oleksii Yanchyshen and Claus Lämmerzahl
{"title":"Gaussian orbital perturbation theory in Schwarzschild space-time in terms of elliptic functions","authors":"Oleksii Yanchyshen and Claus Lämmerzahl","doi":"10.1088/1361-6382/ada90a","DOIUrl":null,"url":null,"abstract":"General relativistic Gauss equations for osculating elements for bound orbits under the influence of a perturbing force in an underlying Schwarzschild space-time have been derived in terms of Weierstrass elliptic functions. Thereby, the perturbation forces are restricted to act within the orbital plane only. These equations are analytically solved in linear approximation for several different perturbations such as cosmological constant perturbation, quantum correction to the Schwarzschild metric, and hybrid Schwarzschild/post-Newtonian 2.5 order self-force for binary systems in an effective one-body framework.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":"11 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ada90a","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

General relativistic Gauss equations for osculating elements for bound orbits under the influence of a perturbing force in an underlying Schwarzschild space-time have been derived in terms of Weierstrass elliptic functions. Thereby, the perturbation forces are restricted to act within the orbital plane only. These equations are analytically solved in linear approximation for several different perturbations such as cosmological constant perturbation, quantum correction to the Schwarzschild metric, and hybrid Schwarzschild/post-Newtonian 2.5 order self-force for binary systems in an effective one-body framework.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Classical and Quantum Gravity
Classical and Quantum Gravity 物理-天文与天体物理
CiteScore
7.00
自引率
8.60%
发文量
301
审稿时长
2-4 weeks
期刊介绍: Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信