{"title":"Spin-torque-driven gigahertz magnetization dynamics in the non-collinear antiferromagnet Mn3Sn","authors":"Won-Bin Lee, Seongmun Hwang, Hye-Won Ko, Byong-Guk Park, Kyung-Jin Lee, Gyung-Min Choi","doi":"10.1038/s41565-025-01859-7","DOIUrl":null,"url":null,"abstract":"<p>Non-collinear antiferromagnets, such as Mn<sub>3</sub>Sn, stand out for their topological properties and potential in antiferromagnetic spintronics. This emerging field aims at harnessing ultrafast magnetization dynamics of antiferromagnets through spin torques. Here we report the time-resolved dynamics of Mn<sub>3</sub>Sn on a picosecond timescale, driven by an optically induced spin current pulse. Our results reveal that the magnetization of Mn<sub>3</sub>Sn tilts immediately after the spin current pulse and subsequently undergoes 70 GHz precession. This immediate tilting underscores the predominant role of damping-like torque stemming from spin current absorption by Mn<sub>3</sub>Sn. We also determine the spin coherence length of Mn<sub>3</sub>Sn to be approximately 15 nm. This value substantially exceeds that of ferromagnets, highlighting a distinct spin-dephasing process in non-collinear antiferromagnets. Our results hold promise for ultrafast applications of non-collinear antiferromagnets and enrich our understanding of their spin-transfer physics.</p>","PeriodicalId":18915,"journal":{"name":"Nature nanotechnology","volume":"123 1","pages":""},"PeriodicalIF":38.1000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1038/s41565-025-01859-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Non-collinear antiferromagnets, such as Mn3Sn, stand out for their topological properties and potential in antiferromagnetic spintronics. This emerging field aims at harnessing ultrafast magnetization dynamics of antiferromagnets through spin torques. Here we report the time-resolved dynamics of Mn3Sn on a picosecond timescale, driven by an optically induced spin current pulse. Our results reveal that the magnetization of Mn3Sn tilts immediately after the spin current pulse and subsequently undergoes 70 GHz precession. This immediate tilting underscores the predominant role of damping-like torque stemming from spin current absorption by Mn3Sn. We also determine the spin coherence length of Mn3Sn to be approximately 15 nm. This value substantially exceeds that of ferromagnets, highlighting a distinct spin-dephasing process in non-collinear antiferromagnets. Our results hold promise for ultrafast applications of non-collinear antiferromagnets and enrich our understanding of their spin-transfer physics.
期刊介绍:
Nature Nanotechnology is a prestigious journal that publishes high-quality papers in various areas of nanoscience and nanotechnology. The journal focuses on the design, characterization, and production of structures, devices, and systems that manipulate and control materials at atomic, molecular, and macromolecular scales. It encompasses both bottom-up and top-down approaches, as well as their combinations.
Furthermore, Nature Nanotechnology fosters the exchange of ideas among researchers from diverse disciplines such as chemistry, physics, material science, biomedical research, engineering, and more. It promotes collaboration at the forefront of this multidisciplinary field. The journal covers a wide range of topics, from fundamental research in physics, chemistry, and biology, including computational work and simulations, to the development of innovative devices and technologies for various industrial sectors such as information technology, medicine, manufacturing, high-performance materials, energy, and environmental technologies. It includes coverage of organic, inorganic, and hybrid materials.