Regulating Interfacial Chemistry to Boost Ionic Transport and Interface Stability of Composite Solid-State Electrolytes for High-Performance Solid-State Lithium Metal Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Sifan Wen, Zhefei Sun, Xiaoyu Wu, Shenghui Zhou, Quanzhi Yin, Haoyu Chen, Jianhai Pan, Zhiwen Zhang, Zilong Zhuang, Jiayu Wan, Weidong Zhou, Dong-Liang Peng, Qiaobao Zhang
{"title":"Regulating Interfacial Chemistry to Boost Ionic Transport and Interface Stability of Composite Solid-State Electrolytes for High-Performance Solid-State Lithium Metal Batteries","authors":"Sifan Wen, Zhefei Sun, Xiaoyu Wu, Shenghui Zhou, Quanzhi Yin, Haoyu Chen, Jianhai Pan, Zhiwen Zhang, Zilong Zhuang, Jiayu Wan, Weidong Zhou, Dong-Liang Peng, Qiaobao Zhang","doi":"10.1002/adfm.202422147","DOIUrl":null,"url":null,"abstract":"Composite solid-state electrolytes (CSSEs) that combine the benefits of inorganic and polymer electrolytes hold great potential for solid-state lithium metal batteries (SSLMBs) due to their high ionic conductivity and superior mechanical properties. However, their overall performance is severely hindered by several practical challenges, including inorganic component aggregation, poor interface behavior, and limited Li<sup>+</sup> transport. Here, a unique ultrathin coating of triaminopropyl triethoxysilane with a bifunctional structure is introduced that effectively bridges the inorganic fillers (Li<sub>1+x</sub>Al<sub>x</sub>Ti<sub>2-x</sub>(PO<sub>4</sub>)<sub>3</sub>, LATP) and the polyvinylidene fluoride hexafluoropropylene /polyethylene oxide polymer matrix, thereby enabling high-performance CSSEs (referred to as SLPH). This design prevents LATP particle agglomeration, improves interfacial compatibility, and ensures the enrichment and fast transport of Li<sup>+</sup> within SLPH. Consequently, the SLPH exhibits a low ionic conduction energy barrier (<i>E</i><sub>a </sub>= 0.462 eV), desirable ionic conductivity (4.19 × 10<sup>−4</sup> S cm<sup>−1</sup> at 60 °C), and a high Li<sup>+</sup> transference number (<span data-altimg=\"/cms/asset/3c7ecbbc-8558-400c-bb0f-c2a69c5d7a91/adfm202422147-math-0001.png\"></span><math altimg=\"urn:x-wiley:1616301X:media:adfm202422147:adfm202422147-math-0001\" display=\"inline\" location=\"graphic/adfm202422147-math-0001.png\">\n<semantics>\n<msub>\n<mi>t</mi>\n<mrow>\n<mi>L</mi>\n<msup>\n<mi>i</mi>\n<mo>+</mo>\n</msup>\n</mrow>\n</msub>\n${{t}_{L{{i}^ + }}}$</annotation>\n</semantics></math> = 0.694). As a result, SSLMBs with SLPH, including Li| SLPH |Li symmetric cells, LiFePO<sub>4</sub>| SLPH |Li coin-type, and pouch cells, demonstrate superior rate capability and long-time cycling stability. This work underscores the significance of surface functionalization of inorganic electrolytes to create a stable solid-solid interface and enhance ionic conduction, paving the way for high-performance CSSEs in SSLMBs.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"33 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202422147","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Composite solid-state electrolytes (CSSEs) that combine the benefits of inorganic and polymer electrolytes hold great potential for solid-state lithium metal batteries (SSLMBs) due to their high ionic conductivity and superior mechanical properties. However, their overall performance is severely hindered by several practical challenges, including inorganic component aggregation, poor interface behavior, and limited Li+ transport. Here, a unique ultrathin coating of triaminopropyl triethoxysilane with a bifunctional structure is introduced that effectively bridges the inorganic fillers (Li1+xAlxTi2-x(PO4)3, LATP) and the polyvinylidene fluoride hexafluoropropylene /polyethylene oxide polymer matrix, thereby enabling high-performance CSSEs (referred to as SLPH). This design prevents LATP particle agglomeration, improves interfacial compatibility, and ensures the enrichment and fast transport of Li+ within SLPH. Consequently, the SLPH exhibits a low ionic conduction energy barrier (E= 0.462 eV), desirable ionic conductivity (4.19 × 10−4 S cm−1 at 60 °C), and a high Li+ transference number ( t L i + ${{t}_{L{{i}^ + }}}$  = 0.694). As a result, SSLMBs with SLPH, including Li| SLPH |Li symmetric cells, LiFePO4| SLPH |Li coin-type, and pouch cells, demonstrate superior rate capability and long-time cycling stability. This work underscores the significance of surface functionalization of inorganic electrolytes to create a stable solid-solid interface and enhance ionic conduction, paving the way for high-performance CSSEs in SSLMBs.

Abstract Image

调节界面化学以提高高性能固态锂金属电池复合固态电解质的离子传输和界面稳定性
复合固态电解质(csse)结合了无机电解质和聚合物电解质的优点,由于其高离子电导率和优异的机械性能,在固态锂金属电池(sslmb)中具有巨大的潜力。然而,它们的整体性能受到一些实际挑战的严重阻碍,包括无机成分聚集、界面行为不良和Li+输运受限。本文介绍了一种独特的具有双功能结构的三胺丙基三乙氧基硅烷超薄涂层,该涂层有效地桥接了无机填料(Li1+xAlxTi2-x(PO4)3, LATP)和聚偏氟乙烯六氟丙烯/聚氧聚乙烯聚合物基体,从而实现了高性能css(简称SLPH)。该设计防止了LATP颗粒团聚,提高了界面相容性,保证了Li+在SLPH内的富集和快速输运。因此,SLPH具有较低的离子传导能垒(Ea = 0.462 eV)、理想的离子电导率(60℃时为4.19 × 10−4 S cm−1)和较高的Li+转移数(tLi+${{t}_{L{{i}^ +}}}$ = 0.694)。因此,具有SLPH的sslmb,包括Li| SLPH |Li对称电池,LiFePO4| SLPH |Li硬币型电池和袋状电池,表现出优越的速率能力和长时间循环稳定性。这项工作强调了无机电解质的表面功能化对于创建稳定的固-固界面和增强离子传导的重要性,为在sslmb中实现高性能cses铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信