Satellite Observations Reveal a Positive Relationship Between Trait-Based Diversity and Drought Response in Temperate Forests

IF 10.8 1区 环境科学与生态学 Q1 BIODIVERSITY CONSERVATION
Isabelle S. Helfenstein, Joan T. Sturm, Bernhard Schmid, Alexander Damm, Meredith C. Schuman, Felix Morsdorf
{"title":"Satellite Observations Reveal a Positive Relationship Between Trait-Based Diversity and Drought Response in Temperate Forests","authors":"Isabelle S. Helfenstein,&nbsp;Joan T. Sturm,&nbsp;Bernhard Schmid,&nbsp;Alexander Damm,&nbsp;Meredith C. Schuman,&nbsp;Felix Morsdorf","doi":"10.1111/gcb.70059","DOIUrl":null,"url":null,"abstract":"<p>Climate extremes such as droughts are expected to increase in frequency and intensity with global change. Therefore, it is important to map and predict ecosystem responses to such extreme events to maintain ecosystem functions and services. Alongside abiotic factors, biotic factors such as the proportion of needle and broadleaf trees were found to affect forest drought responses, corroborating results from biodiversity–ecosystem functioning (BEF) experiments. Yet it remains unclear to what extent the behavior of non-experimental systems at large scales corresponds to the relationships discovered in BEF experiments. Using remote sensing, the trait-based functional diversity of forest ecosystems can be directly quantified. We investigated the relationship between remotely sensed functional richness and evenness and forest drought responses using data from temperate mixed forests in Switzerland, which experienced an extremely hot and dry summer in 2018. We used Sentinel-2 satellite data to assess aspects of functional diversity and quantified drought response in terms of resistance, recovery, and resilience from 2017 to 2020 in a scalable approach. We then analyzed the BEF relationship between functional diversity measures and drought response for different aggregation levels of richness and evenness of three physiological canopy traits (chlorophyll, carotenoid/chlorophyll ratio, and equivalent water thickness). Forest stands with greater trait richness were more resistant and resilient to the drought event, and the relationship of trait evenness with resistance or resilience was hump-shaped or negative, respectively. These results suggest forest functional diversity can support forests in such drought responses via a mixture of complementarity and dominance effects, the first indicated by positive richness effects and the second by negative evenness effects. Our results link ecosystem functioning and biodiversity at large scales and provide new insights into the BEF relationships in non-experimental forest ecosystems.</p>","PeriodicalId":175,"journal":{"name":"Global Change Biology","volume":"31 2","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/gcb.70059","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Change Biology","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/gcb.70059","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIODIVERSITY CONSERVATION","Score":null,"Total":0}
引用次数: 0

Abstract

Climate extremes such as droughts are expected to increase in frequency and intensity with global change. Therefore, it is important to map and predict ecosystem responses to such extreme events to maintain ecosystem functions and services. Alongside abiotic factors, biotic factors such as the proportion of needle and broadleaf trees were found to affect forest drought responses, corroborating results from biodiversity–ecosystem functioning (BEF) experiments. Yet it remains unclear to what extent the behavior of non-experimental systems at large scales corresponds to the relationships discovered in BEF experiments. Using remote sensing, the trait-based functional diversity of forest ecosystems can be directly quantified. We investigated the relationship between remotely sensed functional richness and evenness and forest drought responses using data from temperate mixed forests in Switzerland, which experienced an extremely hot and dry summer in 2018. We used Sentinel-2 satellite data to assess aspects of functional diversity and quantified drought response in terms of resistance, recovery, and resilience from 2017 to 2020 in a scalable approach. We then analyzed the BEF relationship between functional diversity measures and drought response for different aggregation levels of richness and evenness of three physiological canopy traits (chlorophyll, carotenoid/chlorophyll ratio, and equivalent water thickness). Forest stands with greater trait richness were more resistant and resilient to the drought event, and the relationship of trait evenness with resistance or resilience was hump-shaped or negative, respectively. These results suggest forest functional diversity can support forests in such drought responses via a mixture of complementarity and dominance effects, the first indicated by positive richness effects and the second by negative evenness effects. Our results link ecosystem functioning and biodiversity at large scales and provide new insights into the BEF relationships in non-experimental forest ecosystems.

Abstract Image

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Global Change Biology
Global Change Biology 环境科学-环境科学
CiteScore
21.50
自引率
5.20%
发文量
497
审稿时长
3.3 months
期刊介绍: Global Change Biology is an environmental change journal committed to shaping the future and addressing the world's most pressing challenges, including sustainability, climate change, environmental protection, food and water safety, and global health. Dedicated to fostering a profound understanding of the impacts of global change on biological systems and offering innovative solutions, the journal publishes a diverse range of content, including primary research articles, technical advances, research reviews, reports, opinions, perspectives, commentaries, and letters. Starting with the 2024 volume, Global Change Biology will transition to an online-only format, enhancing accessibility and contributing to the evolution of scholarly communication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信