Adeel Zia, Yue Zhang, Akshara Paras Parekh, Guoliang Liu
{"title":"Block Copolymer Based Porous Carbon Fiber─Synthesis, Processing, and Applications","authors":"Adeel Zia, Yue Zhang, Akshara Paras Parekh, Guoliang Liu","doi":"10.1021/accountsmr.4c00404","DOIUrl":null,"url":null,"abstract":"Carbon is an abundant material with remarkable thermal, mechanical, physical, and chemical properties. Each allotrope has unique structures, properties, functionalities, and corresponding applications. Over the past few decades, various types of carbon materials such as graphene, carbon nanotubes, carbon quantum dots, and carbon fibers have been produced, finding applications in energy conversion and storage, water treatment, sensing, polymer composites, and biomedical fields. Among these carbon materials, porous carbons are highly interesting owing to their large surface areas and massive active sites to interact with molecules, ions, and other chemical species. The pore size and pore size distributions can be tunable (micro-, meso-, and macro-pores), providing chemical species with hierarchical structures to transport with low resistances. In this context, designing carbon precursors and preparing porous carbon with desired structures, properties, and functionalities are highly significant.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"20 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00404","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon is an abundant material with remarkable thermal, mechanical, physical, and chemical properties. Each allotrope has unique structures, properties, functionalities, and corresponding applications. Over the past few decades, various types of carbon materials such as graphene, carbon nanotubes, carbon quantum dots, and carbon fibers have been produced, finding applications in energy conversion and storage, water treatment, sensing, polymer composites, and biomedical fields. Among these carbon materials, porous carbons are highly interesting owing to their large surface areas and massive active sites to interact with molecules, ions, and other chemical species. The pore size and pore size distributions can be tunable (micro-, meso-, and macro-pores), providing chemical species with hierarchical structures to transport with low resistances. In this context, designing carbon precursors and preparing porous carbon with desired structures, properties, and functionalities are highly significant.