Constructing High-Performance Heterogeneous Catalysts through Interface Engineering on Metal–Organic Framework Platforms

IF 14 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bo Li, Jian-Gong Ma, Peng Cheng
{"title":"Constructing High-Performance Heterogeneous Catalysts through Interface Engineering on Metal–Organic Framework Platforms","authors":"Bo Li, Jian-Gong Ma, Peng Cheng","doi":"10.1021/accountsmr.4c00367","DOIUrl":null,"url":null,"abstract":"Heterogeneous catalysis has pushed the modern chemical industry to an unprecedented level of development, especially in the past century, where catalytic processes have made significant contributions to the prosperity of the global economy and the modernization of human lifestyles. 80% of chemical processes involve catalytic technology. From the production of fertilizers and the synthesis of high-performance polymers to the development of anticancer drugs, catalysts mediate the occurrence of these chemical processes. Developing efficient, stable, and low-energy heterogeneous catalysts is the key to a sustainable future. Most industrial heterogeneous catalysts typically load highly dispersed active components at the nanoscale onto porous solid supports, which have a large specific surface area. Among the numerous candidates for porous materials, the construction of high-performance heterogeneous catalyst systems through interface engineering on metal–organic framework (MOF) platforms has recently received great attention. Compared with traditional porous materials, MOFs provide a huge active interface for catalytic reactions due to their large specific surface area and porosity. Their extraordinary skeleton structure provides many possibilities for integrating various functional building blocks. At the same time, as crystalline materials with diverse structures, their well-defined atomically precise structure provides an ideal platform for customized design and synthesis of catalysts as well as in-depth exploration of the structure–activity relationship between the structure of catalyst and the catalytic performance. After more than a decade of development, interface engineering has played a significant role in the development of MOF-based heterogeneous catalysts. Therefore, it is timely to summarize the latest developments in this field, which will provide guidance for future research and achieve green, low-carbon, and sustainable modern industries.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"77 4 Pt 1 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heterogeneous catalysis has pushed the modern chemical industry to an unprecedented level of development, especially in the past century, where catalytic processes have made significant contributions to the prosperity of the global economy and the modernization of human lifestyles. 80% of chemical processes involve catalytic technology. From the production of fertilizers and the synthesis of high-performance polymers to the development of anticancer drugs, catalysts mediate the occurrence of these chemical processes. Developing efficient, stable, and low-energy heterogeneous catalysts is the key to a sustainable future. Most industrial heterogeneous catalysts typically load highly dispersed active components at the nanoscale onto porous solid supports, which have a large specific surface area. Among the numerous candidates for porous materials, the construction of high-performance heterogeneous catalyst systems through interface engineering on metal–organic framework (MOF) platforms has recently received great attention. Compared with traditional porous materials, MOFs provide a huge active interface for catalytic reactions due to their large specific surface area and porosity. Their extraordinary skeleton structure provides many possibilities for integrating various functional building blocks. At the same time, as crystalline materials with diverse structures, their well-defined atomically precise structure provides an ideal platform for customized design and synthesis of catalysts as well as in-depth exploration of the structure–activity relationship between the structure of catalyst and the catalytic performance. After more than a decade of development, interface engineering has played a significant role in the development of MOF-based heterogeneous catalysts. Therefore, it is timely to summarize the latest developments in this field, which will provide guidance for future research and achieve green, low-carbon, and sustainable modern industries.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
17.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信