{"title":"Constructing High-Performance Heterogeneous Catalysts through Interface Engineering on Metal–Organic Framework Platforms","authors":"Bo Li, Jian-Gong Ma, Peng Cheng","doi":"10.1021/accountsmr.4c00367","DOIUrl":null,"url":null,"abstract":"Heterogeneous catalysis has pushed the modern chemical industry to an unprecedented level of development, especially in the past century, where catalytic processes have made significant contributions to the prosperity of the global economy and the modernization of human lifestyles. 80% of chemical processes involve catalytic technology. From the production of fertilizers and the synthesis of high-performance polymers to the development of anticancer drugs, catalysts mediate the occurrence of these chemical processes. Developing efficient, stable, and low-energy heterogeneous catalysts is the key to a sustainable future. Most industrial heterogeneous catalysts typically load highly dispersed active components at the nanoscale onto porous solid supports, which have a large specific surface area. Among the numerous candidates for porous materials, the construction of high-performance heterogeneous catalyst systems through interface engineering on metal–organic framework (MOF) platforms has recently received great attention. Compared with traditional porous materials, MOFs provide a huge active interface for catalytic reactions due to their large specific surface area and porosity. Their extraordinary skeleton structure provides many possibilities for integrating various functional building blocks. At the same time, as crystalline materials with diverse structures, their well-defined atomically precise structure provides an ideal platform for customized design and synthesis of catalysts as well as in-depth exploration of the structure–activity relationship between the structure of catalyst and the catalytic performance. After more than a decade of development, interface engineering has played a significant role in the development of MOF-based heterogeneous catalysts. Therefore, it is timely to summarize the latest developments in this field, which will provide guidance for future research and achieve green, low-carbon, and sustainable modern industries.","PeriodicalId":72040,"journal":{"name":"Accounts of materials research","volume":"77 4 Pt 1 1","pages":""},"PeriodicalIF":14.0000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of materials research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/accountsmr.4c00367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterogeneous catalysis has pushed the modern chemical industry to an unprecedented level of development, especially in the past century, where catalytic processes have made significant contributions to the prosperity of the global economy and the modernization of human lifestyles. 80% of chemical processes involve catalytic technology. From the production of fertilizers and the synthesis of high-performance polymers to the development of anticancer drugs, catalysts mediate the occurrence of these chemical processes. Developing efficient, stable, and low-energy heterogeneous catalysts is the key to a sustainable future. Most industrial heterogeneous catalysts typically load highly dispersed active components at the nanoscale onto porous solid supports, which have a large specific surface area. Among the numerous candidates for porous materials, the construction of high-performance heterogeneous catalyst systems through interface engineering on metal–organic framework (MOF) platforms has recently received great attention. Compared with traditional porous materials, MOFs provide a huge active interface for catalytic reactions due to their large specific surface area and porosity. Their extraordinary skeleton structure provides many possibilities for integrating various functional building blocks. At the same time, as crystalline materials with diverse structures, their well-defined atomically precise structure provides an ideal platform for customized design and synthesis of catalysts as well as in-depth exploration of the structure–activity relationship between the structure of catalyst and the catalytic performance. After more than a decade of development, interface engineering has played a significant role in the development of MOF-based heterogeneous catalysts. Therefore, it is timely to summarize the latest developments in this field, which will provide guidance for future research and achieve green, low-carbon, and sustainable modern industries.