Binding of the three-hadron DD*K system from the lattice effective field theory

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy
Zhenyu Zhang, Xin-Yue Hu, Guangzhao He, Jun Liu, Jia-Ai Shi, Bing-Nan Lu, Qian Wang
{"title":"Binding of the three-hadron DD*K system from the lattice effective field theory","authors":"Zhenyu Zhang, Xin-Yue Hu, Guangzhao He, Jun Liu, Jia-Ai Shi, Bing-Nan Lu, Qian Wang","doi":"10.1103/physrevd.111.036002","DOIUrl":null,"url":null,"abstract":"We employ the nuclear lattice effective field theory (NLEFT), an efficient tool for nuclear calculations, to solve the asymmetric multihadron systems. We take the D</a:mi>D</a:mi>*</a:mo></a:msup>K</a:mi></a:math> three-body system as an illustration to demonstrate the capability of the method. Here the two-body chiral interactions between <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>D</c:mi></c:math>, <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:msup><e:mi>D</e:mi><e:mo>*</e:mo></e:msup></e:math>, and <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>K</g:mi></g:math> are regulated with a soft lattice regulator and calibrated with the binding energies of the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msubsup><i:mi>T</i:mi><i:mrow><i:mi>c</i:mi><i:mi>c</i:mi></i:mrow><i:mo>+</i:mo></i:msubsup></i:math>, <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msubsup><k:mi>D</k:mi><k:mrow><k:mi>s</k:mi><k:mn>0</k:mn></k:mrow><k:mo>*</k:mo></k:msubsup><k:mo stretchy=\"false\">(</k:mo><k:mn>2317</k:mn><k:mo stretchy=\"false\">)</k:mo></k:math>, and <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:msub><o:mi>D</o:mi><o:mrow><o:mi>s</o:mi><o:mn>1</o:mn></o:mrow></o:msub><o:mo stretchy=\"false\">(</o:mo><o:mn>2460</o:mn><o:mo stretchy=\"false\">)</o:mo></o:math> molecular states. We then calculate the three-body binding energy using the NLEFT and analyze the systematic uncertainties due to the finite volume effects, the sliding cutoff, and the leading-order three-body forces. Even when the three-body interaction is repulsive (even as large as the infinite repulsive interaction), the three-body system has a bound state unambiguously with binding energy no larger than the <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:msub><s:mi>D</s:mi><s:mrow><s:mi>s</s:mi><s:mn>1</s:mn></s:mrow></s:msub><s:mo stretchy=\"false\">(</s:mo><s:mn>2460</s:mn><s:mo stretchy=\"false\">)</s:mo><s:mi>D</s:mi></s:math> threshold. To check the renormalization group invariance of our framework, we extract the first excited state. We find that when the ground state is fixed, the first excited states with various cutoffs coincide with each other when the cubic size goes larger. In addition, the standard angular momentum and parity projection technique is implemented for the quantum numbers of the ground and excited states. We find that both of them are <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>S</w:mi></w:math>-wave states with quantum number <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:msup><y:mi>J</y:mi><y:mi>P</y:mi></y:msup><y:mo>=</y:mo><y:msup><y:mn>1</y:mn><y:mo>−</y:mo></y:msup></y:math>. Because the three-body state contains two charm quarks, it is easier to be detected in the Large Hadron Collider. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"35 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.036002","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

We employ the nuclear lattice effective field theory (NLEFT), an efficient tool for nuclear calculations, to solve the asymmetric multihadron systems. We take the DD*K three-body system as an illustration to demonstrate the capability of the method. Here the two-body chiral interactions between D, D*, and K are regulated with a soft lattice regulator and calibrated with the binding energies of the Tcc+, Ds0*(2317), and Ds1(2460) molecular states. We then calculate the three-body binding energy using the NLEFT and analyze the systematic uncertainties due to the finite volume effects, the sliding cutoff, and the leading-order three-body forces. Even when the three-body interaction is repulsive (even as large as the infinite repulsive interaction), the three-body system has a bound state unambiguously with binding energy no larger than the Ds1(2460)D threshold. To check the renormalization group invariance of our framework, we extract the first excited state. We find that when the ground state is fixed, the first excited states with various cutoffs coincide with each other when the cubic size goes larger. In addition, the standard angular momentum and parity projection technique is implemented for the quantum numbers of the ground and excited states. We find that both of them are S-wave states with quantum number JP=1. Because the three-body state contains two charm quarks, it is easier to be detected in the Large Hadron Collider. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信