Magnetic Capture of Functionalized Nanoscale Zerovalent Iron for Soil Remediation: A Feasibility Study on Transport Control

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Wei Ming Ng, Wai Hong Chong, Ahmad Zuhairi Abdullah, JitKang Lim
{"title":"Magnetic Capture of Functionalized Nanoscale Zerovalent Iron for Soil Remediation: A Feasibility Study on Transport Control","authors":"Wei Ming Ng, Wai Hong Chong, Ahmad Zuhairi Abdullah, JitKang Lim","doi":"10.1021/acs.langmuir.4c04720","DOIUrl":null,"url":null,"abstract":"Nanoscale zerovalent iron (nZVI) has been proposed as a promising nanomaterial for soil remediation. However, injecting nZVI into contaminated sites to target and treat pollutant sources may pose potential environmental risks due to its colloidal stability and mobility in the environment. In this regard, this study assessed the feasibility of implementing magnetic capture of surface-functionalized nZVI in soil environments under the influence of the convective flow current. Here, functionalized nZVI particles were prepared by introducing carboxymethyl cellulose (CMC) as a stabilizing agent during the synthesis of nZVI by using the liquid-phase reduction method. The functionalized nZVI particles were then injected into a two-dimensional flow column containing a sand matrix with a high gradient magnetic trap (HGMT) embedded within the system. Particle transports in both the absence and presence of a magnetic field were recorded by using a digital camera, and the breakthrough curves were generated from the data collected spectrophotometrically. The results showed that the relative breakthrough concentration of nZVI decreased from 0.92 to nearly zero, with a delayed breakthrough time as the applied magnetic field strength increased from zero (no magnetic field) to 0.093 T, demonstrating a 100% capture efficiency. It was found that the magnetic capture for the nZVI particles was contributed by two mechanisms: (1) low gradient magnetic separation (LGMS), driven by the penetrating magnetic field from the permanent magnets, and (2) high gradient magnetic separation (HGMS), which occurred near the wire surfaces within the HGMT section magnetized by the permanent magnets. Findings in this work have proven the feasibility of magnetic separation as a control strategy for nanoparticle applications in environmental remediation.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"22 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04720","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Nanoscale zerovalent iron (nZVI) has been proposed as a promising nanomaterial for soil remediation. However, injecting nZVI into contaminated sites to target and treat pollutant sources may pose potential environmental risks due to its colloidal stability and mobility in the environment. In this regard, this study assessed the feasibility of implementing magnetic capture of surface-functionalized nZVI in soil environments under the influence of the convective flow current. Here, functionalized nZVI particles were prepared by introducing carboxymethyl cellulose (CMC) as a stabilizing agent during the synthesis of nZVI by using the liquid-phase reduction method. The functionalized nZVI particles were then injected into a two-dimensional flow column containing a sand matrix with a high gradient magnetic trap (HGMT) embedded within the system. Particle transports in both the absence and presence of a magnetic field were recorded by using a digital camera, and the breakthrough curves were generated from the data collected spectrophotometrically. The results showed that the relative breakthrough concentration of nZVI decreased from 0.92 to nearly zero, with a delayed breakthrough time as the applied magnetic field strength increased from zero (no magnetic field) to 0.093 T, demonstrating a 100% capture efficiency. It was found that the magnetic capture for the nZVI particles was contributed by two mechanisms: (1) low gradient magnetic separation (LGMS), driven by the penetrating magnetic field from the permanent magnets, and (2) high gradient magnetic separation (HGMS), which occurred near the wire surfaces within the HGMT section magnetized by the permanent magnets. Findings in this work have proven the feasibility of magnetic separation as a control strategy for nanoparticle applications in environmental remediation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信