A Paintable, Scalable, and Durable Zwitterionic Hydrogel Coating for Enhanced Marine Antifouling Applications

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Boyi Song, Ershuai Zhang, Yuanjie Shi, Hui Zhu, Wei Wang, Sheu-Jane Gallagher, Zhiqiang Cao
{"title":"A Paintable, Scalable, and Durable Zwitterionic Hydrogel Coating for Enhanced Marine Antifouling Applications","authors":"Boyi Song, Ershuai Zhang, Yuanjie Shi, Hui Zhu, Wei Wang, Sheu-Jane Gallagher, Zhiqiang Cao","doi":"10.1021/acs.langmuir.4c04595","DOIUrl":null,"url":null,"abstract":"Marine biofouling has been a severe challenge since the increase of maritime trade, significantly impacting the efficiency of ships by increasing drag, fuel consumption, hull corrosion, and even problems related to navigational safety and biological invasions. Commercial antifouling coatings have been developed for many years, but a satisfactory solution has yet to be found due to problems, such as high toxicity, environmental pollution, or high costs. Zwitterionic materials, with their superhydrophilic properties, demonstrate excellent resistance to nonspecific adhesion alongside good biocompatibility, making them promising candidates for marine antifouling applications. However, their superhydrophilic nature makes it difficult to anchor onto hydrophobic substrates, limiting their use. In this study, we presented a paintable, scalable, and durable antifouling coating system made by zwitterionic hydrogel (PSDA-Z), which was covalently attached to substrates through an acrylated epoxy resin primer coat and maintained antifouling performance even after 3 months of high-speed water shearing, high-pressure sandpaper abrasion, and sharp scratching. This PSDA-Z could also easily be applied on various substrates without specific treatments, including epoxy resin, poly(vinyl chloride) (PVC), polyurethane (PU), and wood. More importantly, this coating system achieved excellent antifouling performance comparable to self-polishing coatings (SPCs), the current industry standard in marine antifouling coating, in the Atlantic Ocean field tests for 3 months, suggesting its promise as an effective and ecofriendly alternative for marine antifouling applications.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"23 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04595","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Marine biofouling has been a severe challenge since the increase of maritime trade, significantly impacting the efficiency of ships by increasing drag, fuel consumption, hull corrosion, and even problems related to navigational safety and biological invasions. Commercial antifouling coatings have been developed for many years, but a satisfactory solution has yet to be found due to problems, such as high toxicity, environmental pollution, or high costs. Zwitterionic materials, with their superhydrophilic properties, demonstrate excellent resistance to nonspecific adhesion alongside good biocompatibility, making them promising candidates for marine antifouling applications. However, their superhydrophilic nature makes it difficult to anchor onto hydrophobic substrates, limiting their use. In this study, we presented a paintable, scalable, and durable antifouling coating system made by zwitterionic hydrogel (PSDA-Z), which was covalently attached to substrates through an acrylated epoxy resin primer coat and maintained antifouling performance even after 3 months of high-speed water shearing, high-pressure sandpaper abrasion, and sharp scratching. This PSDA-Z could also easily be applied on various substrates without specific treatments, including epoxy resin, poly(vinyl chloride) (PVC), polyurethane (PU), and wood. More importantly, this coating system achieved excellent antifouling performance comparable to self-polishing coatings (SPCs), the current industry standard in marine antifouling coating, in the Atlantic Ocean field tests for 3 months, suggesting its promise as an effective and ecofriendly alternative for marine antifouling applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信