Silica Janus Particle-Based Coating Applicable to Multiple Substrates Shows Durable Superhydrophobicity, Wear Resistance, and Corrosion Inhibition

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Chuangye Wang, Jianing Ge, Mengyu Cui, Jintang Xue, Huili Liu, Xinrong Song, Xinyi Zhang
{"title":"Silica Janus Particle-Based Coating Applicable to Multiple Substrates Shows Durable Superhydrophobicity, Wear Resistance, and Corrosion Inhibition","authors":"Chuangye Wang, Jianing Ge, Mengyu Cui, Jintang Xue, Huili Liu, Xinrong Song, Xinyi Zhang","doi":"10.1021/acs.langmuir.4c05345","DOIUrl":null,"url":null,"abstract":"The present work reports the fabrication of a durable superhydrophobic coating based on silica Janus particles. One side of the silica particles was modified by (3-aminopropyl)triethoxysilane to have a reactive alkylamine group, and the other side was treated with octadecyltrimethoxysilane to be hydrophobic. These Janus particles were held together by binder molecules that reacted with the amines attached to the Janus particles and adhered to different substrates, forming superhydrophobic coatings. The water contact angles of the coatings were higher than 158°, whereas their sliding angles were as low as 2°. Their hydrophobicity was preserved even after 200 cycles of intensive abrasion or after 60 days of immersion in 3.5% NaCl solution, evidencing their durable resistance to abrasion and corrosion. The most remarkable property of the presented Janus silica particle-based coating is that it can strongly adhere to multiple substrates such as active metal aluminum, flat substrate glass, biological material wood, and organic polymer with low surface energy polyperfluoroethylene. Moreover, the hydrophobicity, antiwear resistance, and corrosion inhibition ability of the fabricated coating were independent of the substrates. This superiority enables this coating to cover many substrates with different surface properties to fulfill a variety of technical demands.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"125 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05345","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The present work reports the fabrication of a durable superhydrophobic coating based on silica Janus particles. One side of the silica particles was modified by (3-aminopropyl)triethoxysilane to have a reactive alkylamine group, and the other side was treated with octadecyltrimethoxysilane to be hydrophobic. These Janus particles were held together by binder molecules that reacted with the amines attached to the Janus particles and adhered to different substrates, forming superhydrophobic coatings. The water contact angles of the coatings were higher than 158°, whereas their sliding angles were as low as 2°. Their hydrophobicity was preserved even after 200 cycles of intensive abrasion or after 60 days of immersion in 3.5% NaCl solution, evidencing their durable resistance to abrasion and corrosion. The most remarkable property of the presented Janus silica particle-based coating is that it can strongly adhere to multiple substrates such as active metal aluminum, flat substrate glass, biological material wood, and organic polymer with low surface energy polyperfluoroethylene. Moreover, the hydrophobicity, antiwear resistance, and corrosion inhibition ability of the fabricated coating were independent of the substrates. This superiority enables this coating to cover many substrates with different surface properties to fulfill a variety of technical demands.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信