Optical widefield nuclear magnetic resonance microscopy

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Karl D. Briegel, Nick R. von Grafenstein, Julia C. Draeger, Peter Blümler, Robin D. Allert, Dominik B. Bucher
{"title":"Optical widefield nuclear magnetic resonance microscopy","authors":"Karl D. Briegel, Nick R. von Grafenstein, Julia C. Draeger, Peter Blümler, Robin D. Allert, Dominik B. Bucher","doi":"10.1038/s41467-024-55003-5","DOIUrl":null,"url":null,"abstract":"<p>Microscopy enables detailed visualization and understanding of minute structures or processes. While cameras have significantly advanced optical, infrared, and electron microscopy, imaging nuclear magnetic resonance (NMR) signals on a camera has remained elusive. Here, we employ nitrogen-vacancy centers in diamond as a quantum sensor, which converts NMR signals into optical signals that are subsequently captured by a high-speed camera. Unlike traditional magnetic resonance imaging, our method records the NMR signal over a wide field of view in real space. We demonstrate that our optical widefield NMR microscopy can image NMR signals in microfluidic structures with a ~10 μm resolution across a ~235 × 150 μm<sup>2</sup> area. Crucially, each camera pixel records an NMR spectrum providing multicomponent information about the signal’s amplitude, phase, local magnetic field strengths, and gradients. The fusion of optical microscopy and NMR techniques enables multifaceted imaging applications in the physical and life sciences.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"122 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55003-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Microscopy enables detailed visualization and understanding of minute structures or processes. While cameras have significantly advanced optical, infrared, and electron microscopy, imaging nuclear magnetic resonance (NMR) signals on a camera has remained elusive. Here, we employ nitrogen-vacancy centers in diamond as a quantum sensor, which converts NMR signals into optical signals that are subsequently captured by a high-speed camera. Unlike traditional magnetic resonance imaging, our method records the NMR signal over a wide field of view in real space. We demonstrate that our optical widefield NMR microscopy can image NMR signals in microfluidic structures with a ~10 μm resolution across a ~235 × 150 μm2 area. Crucially, each camera pixel records an NMR spectrum providing multicomponent information about the signal’s amplitude, phase, local magnetic field strengths, and gradients. The fusion of optical microscopy and NMR techniques enables multifaceted imaging applications in the physical and life sciences.

Abstract Image

光学宽视场核磁共振显微镜
显微镜可以使详细的可视化和理解微小的结构或过程。虽然相机具有非常先进的光学,红外和电子显微镜,但在相机上成像核磁共振(NMR)信号仍然难以捉摸。在这里,我们采用金刚石中的氮空位中心作为量子传感器,将核磁共振信号转换为光学信号,随后由高速摄像机捕获。与传统的磁共振成像不同,我们的方法记录了真实空间中宽视场的核磁共振信号。我们证明了我们的光学宽视场核磁共振显微镜可以在~235 × 150 μm2的面积上以~10 μm的分辨率成像微流控结构中的核磁共振信号。至关重要的是,每个相机像素记录一个核磁共振谱,提供有关信号的幅度、相位、局部磁场强度和梯度的多分量信息。光学显微镜和核磁共振技术的融合使物理和生命科学中的多方面成像应用成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信