{"title":"Emerging PFAS Exposure Is More Potent in Altering Childhood Lipid Levels Mediated by Mitochondrial DNA Copy Number","authors":"Peiwei Xu, Min Nian, Jie Xiang, Xinhan Zhang, Ping Cheng, Dandan Xu, Yuan Chen, Xiaofeng Wang, Zhijian Chen, Xiaoming Lou, Mingliang Fang","doi":"10.1021/acs.est.4c13095","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) pose potential health risks to lipid metabolism, but the effects of emerging PFAS alternatives, particularly in children, remain unclear. This cross-sectional study investigated the association between emerging PFAS exposure and lipid levels in 294 Chinese children aged 7–10 years, analyzing blood samples for 14 PFAS and lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). Exposure to 6:2 Cl-PFESA, PFO4DA, and PFO5DoDA was associated with higher TC, TG, and LDL levels, with PFO4DA increasing the TC by 1.7% and PFO5DoDA increasing the TG by 10.7%. Weighted quantile sum (WQS) regression showed mixed PFAS exposure positively associated with TG (0.08, 95% CI: 0.007, 0.153). PFO4DA had the highest weight for TC (0.468), TG (0.327), LDL (0.57), ApoA1 (0.243), and ApoB (0.466), while PFMOAA had the highest weight for HDL (0.332). Bayesian Kernel Machine Regression (BKMR) analysis confirmed positive associations between the PFAS mixture and TC, TG, LDL, and ApoA1. Mediation analysis revealed that mtDNAcn significantly mediated PFAS exposure’s effect on TG levels, explaining 27.2–74.2% of the total effect. These findings highlight the need for regulatory action to address the emerging PFAS risks.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"5 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c13095","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose potential health risks to lipid metabolism, but the effects of emerging PFAS alternatives, particularly in children, remain unclear. This cross-sectional study investigated the association between emerging PFAS exposure and lipid levels in 294 Chinese children aged 7–10 years, analyzing blood samples for 14 PFAS and lipid profiles, including triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), apolipoprotein A1 (ApoA1), and apolipoprotein B (ApoB). Exposure to 6:2 Cl-PFESA, PFO4DA, and PFO5DoDA was associated with higher TC, TG, and LDL levels, with PFO4DA increasing the TC by 1.7% and PFO5DoDA increasing the TG by 10.7%. Weighted quantile sum (WQS) regression showed mixed PFAS exposure positively associated with TG (0.08, 95% CI: 0.007, 0.153). PFO4DA had the highest weight for TC (0.468), TG (0.327), LDL (0.57), ApoA1 (0.243), and ApoB (0.466), while PFMOAA had the highest weight for HDL (0.332). Bayesian Kernel Machine Regression (BKMR) analysis confirmed positive associations between the PFAS mixture and TC, TG, LDL, and ApoA1. Mediation analysis revealed that mtDNAcn significantly mediated PFAS exposure’s effect on TG levels, explaining 27.2–74.2% of the total effect. These findings highlight the need for regulatory action to address the emerging PFAS risks.
期刊介绍:
Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences.
Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.