Epidermal Mechanical Scratching-Induced ROS Exacerbates the Itch-Scratch Cycle via TRPA1 Activation on Mast Cells in Atopic Dermatitis.

Jiahui Hu, Qiang Zhao, Delu Che, Bin Peng, Xi Wang, Zhuochen CathyWang, Li Li, Songmei Geng
{"title":"Epidermal Mechanical Scratching-Induced ROS Exacerbates the Itch-Scratch Cycle via TRPA1 Activation on Mast Cells in Atopic Dermatitis.","authors":"Jiahui Hu, Qiang Zhao, Delu Che, Bin Peng, Xi Wang, Zhuochen CathyWang, Li Li, Songmei Geng","doi":"10.1016/j.jid.2024.12.026","DOIUrl":null,"url":null,"abstract":"<p><p>Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by the itch-scratch cycle. Itching, induced by irritants or allergens that stimulate pruriceptive neurons, triggers uncontrollable mechanical scratching, leading to epidermal barrier disruption, immune response activation, inflammatory mediator release, and further stimulation of pruritus conduction. Although oxidative stress and immune cells can exacerbate this cycle, the correlation between mechanical scratching, epidermal oxidative stress, and dermal mast cell activation in AD remains unclear. Here, by examining clinical specimens of AD, establishing a three-dimensional co-culture system of HaCaT and LAD2 cells, and utilizing a mechanical scratching mouse model of AD, we found that reactive oxygen species produced by mechanically stimulated HaCaT can activate TRPA1 on mast cells presenting tryptase (TPS). Implementing a free radical scavenger and TRPA1 inhibitor can inhibit mast cell activation and type II inflammatory response, thereby alleviating itching and skin lesions in AD. These results indicate that active oxygen scavenging combined with TRPA1 inhibition can inhibit the itch-scratch cycle, which may present a potential approach for the treatment of AD.</p>","PeriodicalId":94239,"journal":{"name":"The Journal of investigative dermatology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of investigative dermatology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jid.2024.12.026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease characterized by the itch-scratch cycle. Itching, induced by irritants or allergens that stimulate pruriceptive neurons, triggers uncontrollable mechanical scratching, leading to epidermal barrier disruption, immune response activation, inflammatory mediator release, and further stimulation of pruritus conduction. Although oxidative stress and immune cells can exacerbate this cycle, the correlation between mechanical scratching, epidermal oxidative stress, and dermal mast cell activation in AD remains unclear. Here, by examining clinical specimens of AD, establishing a three-dimensional co-culture system of HaCaT and LAD2 cells, and utilizing a mechanical scratching mouse model of AD, we found that reactive oxygen species produced by mechanically stimulated HaCaT can activate TRPA1 on mast cells presenting tryptase (TPS). Implementing a free radical scavenger and TRPA1 inhibitor can inhibit mast cell activation and type II inflammatory response, thereby alleviating itching and skin lesions in AD. These results indicate that active oxygen scavenging combined with TRPA1 inhibition can inhibit the itch-scratch cycle, which may present a potential approach for the treatment of AD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信