Modelling the alpha and beta diversity of copepods across tropical and subtropical Atlantic ecoregions.

Lorena Martínez-Leiva, José M Landeira, Maria Luz Fernández de Puelles, Santiago Hernández-León, Víctor M Tuset, Effrosyni Fatira
{"title":"Modelling the alpha and beta diversity of copepods across tropical and subtropical Atlantic ecoregions.","authors":"Lorena Martínez-Leiva, José M Landeira, Maria Luz Fernández de Puelles, Santiago Hernández-León, Víctor M Tuset, Effrosyni Fatira","doi":"10.1038/s44185-025-00073-x","DOIUrl":null,"url":null,"abstract":"<p><p>Copepods, the most abundant individuals of the mesozooplankton, play a pivotal role in marine food webs and carbon cycling. However, few studies have focused on their diversity and the environmental factors influencing it. The objective of the present study is to model the alpha and beta diversity of copepods across the tropical and subtropical ecoregions of Atlantic Ocean using both taxonomic and functional approaches. The study used a dataset of 226 copepod species collected by stratified plankton hauls (0-800 m depth) across the tropical and equatorial Atlantic, from oligotrophic waters close to the Brazilian coast to more productive waters close to the Mauritanian Upwelling. To perform the functional analysis, six traits related to the behaviour, growth, and reproduction of copepods were selected. Several alpha diversities were estimated using taxonomic metrics (SR, Δ+, and Λ+) and functional metrics (FDis, FEve, FDiv, FOri, FSpe), and modelized with GAM model across spatial and environmental gradients, and day/night. The overall and two components of β-diversity (turnover and nestedness) were shared between depth and stations. The surface layers of stations from oligotrophic, equatorial, and Cape Verde ecoregions displayed higher values of taxonomic α-diversity. More unpredictable were the facets of functional α-diversity, although they showed a tendency to be positive with depth during the daytime. The GAM analysis revealed spatial gradients as the key factors modelling the taxonomic α-diversity, whereas depth was the most relevant for functional α-diversity. The turnover component drove taxonomic β-diversity in depth and station, whereas the nestedness component acquired relevance for the functional β-diversity. The taxonomic structure of the copepod community varied spatially across depths and ecoregions, but this was not linked to functional changes of the same magnitude.</p>","PeriodicalId":520249,"journal":{"name":"npj biodiversity","volume":"4 1","pages":"3"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785948/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj biodiversity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44185-025-00073-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Copepods, the most abundant individuals of the mesozooplankton, play a pivotal role in marine food webs and carbon cycling. However, few studies have focused on their diversity and the environmental factors influencing it. The objective of the present study is to model the alpha and beta diversity of copepods across the tropical and subtropical ecoregions of Atlantic Ocean using both taxonomic and functional approaches. The study used a dataset of 226 copepod species collected by stratified plankton hauls (0-800 m depth) across the tropical and equatorial Atlantic, from oligotrophic waters close to the Brazilian coast to more productive waters close to the Mauritanian Upwelling. To perform the functional analysis, six traits related to the behaviour, growth, and reproduction of copepods were selected. Several alpha diversities were estimated using taxonomic metrics (SR, Δ+, and Λ+) and functional metrics (FDis, FEve, FDiv, FOri, FSpe), and modelized with GAM model across spatial and environmental gradients, and day/night. The overall and two components of β-diversity (turnover and nestedness) were shared between depth and stations. The surface layers of stations from oligotrophic, equatorial, and Cape Verde ecoregions displayed higher values of taxonomic α-diversity. More unpredictable were the facets of functional α-diversity, although they showed a tendency to be positive with depth during the daytime. The GAM analysis revealed spatial gradients as the key factors modelling the taxonomic α-diversity, whereas depth was the most relevant for functional α-diversity. The turnover component drove taxonomic β-diversity in depth and station, whereas the nestedness component acquired relevance for the functional β-diversity. The taxonomic structure of the copepod community varied spatially across depths and ecoregions, but this was not linked to functional changes of the same magnitude.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信