The European earwig Forficula auricularia (Dermaptera: Forficulidae) in California citrus: a sampling method, population surveys, and description of earwig movement into the tree canopy.

Jay A Rosenheim, Emma Cluff, Kelley Morrow
{"title":"The European earwig Forficula auricularia (Dermaptera: Forficulidae) in California citrus: a sampling method, population surveys, and description of earwig movement into the tree canopy.","authors":"Jay A Rosenheim, Emma Cluff, Kelley Morrow","doi":"10.1093/jee/toaf023","DOIUrl":null,"url":null,"abstract":"<p><p>The European earwig F. auricularia L. is an omnivore that has only recently been identified as a direct, fruit-feeding pest of citrus. Here, we start to build the basic tools needed for integrated pest management for this species. We introduce a time-efficient sampling method based on small wooden boards placed on the ground, and we use them in a 2-yr survey of 93 commercial citrus blocks in California's San Joaquin Valley. Insecticides were not applied targeting F. auricularia in any of these citrus blocks. We find that F. auricularia populations are very low or undetectable in most blocks, with higher densities occurring only sporadically. To know when control measures should be implemented, we used video-monitoring of citrus tree trunks to characterize the timing of F. auricularia movement from their soil nests into the tree canopy. Movement of earwigs along the tree trunks was observed throughout our sampling period (22 March to 18 June), suggesting that control measures (sticky bands placed on trunks, or insecticides applied to trunks and surrounding soil surface) should be applied early, well before petal fall when fruit are susceptible to F. auricularia herbivory. Sticky barriers effectively reduced the vertical movement of 2 crawling arthropods, F. auricularia and the Fuller rose beetle Napactus godmanni, along citrus trunks. We failed to find any relationship between estimated F. auricularia densities and damage to maturing or harvested fruit. This highlights a set of important and still unresolved questions about the biology of this species, underscoring the need for additional research.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The European earwig F. auricularia L. is an omnivore that has only recently been identified as a direct, fruit-feeding pest of citrus. Here, we start to build the basic tools needed for integrated pest management for this species. We introduce a time-efficient sampling method based on small wooden boards placed on the ground, and we use them in a 2-yr survey of 93 commercial citrus blocks in California's San Joaquin Valley. Insecticides were not applied targeting F. auricularia in any of these citrus blocks. We find that F. auricularia populations are very low or undetectable in most blocks, with higher densities occurring only sporadically. To know when control measures should be implemented, we used video-monitoring of citrus tree trunks to characterize the timing of F. auricularia movement from their soil nests into the tree canopy. Movement of earwigs along the tree trunks was observed throughout our sampling period (22 March to 18 June), suggesting that control measures (sticky bands placed on trunks, or insecticides applied to trunks and surrounding soil surface) should be applied early, well before petal fall when fruit are susceptible to F. auricularia herbivory. Sticky barriers effectively reduced the vertical movement of 2 crawling arthropods, F. auricularia and the Fuller rose beetle Napactus godmanni, along citrus trunks. We failed to find any relationship between estimated F. auricularia densities and damage to maturing or harvested fruit. This highlights a set of important and still unresolved questions about the biology of this species, underscoring the need for additional research.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信