Iman Kafian-Attari, Mohammad Ebrahimi, Ervin Nippolainen, Arash Mirhashemi, Petri Paakkari, Florian Bergmann, Florian Foschum, Alwin Kienle, Juha Töyräs, Isaac Afara
{"title":"The Relationship Between the Optical Properties of Articular Cartilage and the Biomechanical Parameters of the Tissue","authors":"Iman Kafian-Attari, Mohammad Ebrahimi, Ervin Nippolainen, Arash Mirhashemi, Petri Paakkari, Florian Bergmann, Florian Foschum, Alwin Kienle, Juha Töyräs, Isaac Afara","doi":"10.1002/jbio.202400460","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the relationship between the optical properties of articular cartilage with its biomechanical parameters. The absorption and reduced scattering coefficients of articular cartilage, and average maximum penetration depth, average maximum lateral spread, and average path length of photons were estimated by optical measurements and Monte Carlo simulation. The equilibrium and instantaneous moduli, and initial fibrillar network, strain-dependent fibrillar network, and nonfibrillar network moduli, and initial and deformation-dependent permeability of the tissue were estimated by multistep stress-relaxation measurement and fibril-reinforced poroelastic modeling. The relationship between the optical properties and biomechanical parameters was assessed using predictive regression modeling. A strong relationship was found between reduced scattering coefficients, averaged maximum penetration depth, averaged maximum lateral spread, and average path length of photons with equilibrium, instantaneous, and initial fibrillar network moduli. We attribute this relationship to the collagen fibers as the main contributor to the scattering and biomechanical properties of the tissue.</p>","PeriodicalId":184,"journal":{"name":"Journal of Biophotonics","volume":"18 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbio.202400460","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biophotonics","FirstCategoryId":"101","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbio.202400460","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the relationship between the optical properties of articular cartilage with its biomechanical parameters. The absorption and reduced scattering coefficients of articular cartilage, and average maximum penetration depth, average maximum lateral spread, and average path length of photons were estimated by optical measurements and Monte Carlo simulation. The equilibrium and instantaneous moduli, and initial fibrillar network, strain-dependent fibrillar network, and nonfibrillar network moduli, and initial and deformation-dependent permeability of the tissue were estimated by multistep stress-relaxation measurement and fibril-reinforced poroelastic modeling. The relationship between the optical properties and biomechanical parameters was assessed using predictive regression modeling. A strong relationship was found between reduced scattering coefficients, averaged maximum penetration depth, averaged maximum lateral spread, and average path length of photons with equilibrium, instantaneous, and initial fibrillar network moduli. We attribute this relationship to the collagen fibers as the main contributor to the scattering and biomechanical properties of the tissue.
期刊介绍:
The first international journal dedicated to publishing reviews and original articles from this exciting field, the Journal of Biophotonics covers the broad range of research on interactions between light and biological material. The journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for the diagnosis of diseases. As such, the journal is highly interdisciplinary, publishing cutting edge research in the fields of life sciences, medicine, physics, chemistry, and engineering. The coverage extends from fundamental research to specific developments, while also including the latest applications.