Acoustic impedance-based surface acoustic wave chip for gas leak detection and respiratory monitoring.

Baile Cui, Wen Wang, Lina Cheng, Jing Jin, Anyu Hu, Zixuan Ren, Xufeng Xue, Yong Liang
{"title":"Acoustic impedance-based surface acoustic wave chip for gas leak detection and respiratory monitoring.","authors":"Baile Cui, Wen Wang, Lina Cheng, Jing Jin, Anyu Hu, Zixuan Ren, Xufeng Xue, Yong Liang","doi":"10.1038/s44172-025-00347-z","DOIUrl":null,"url":null,"abstract":"<p><p>Acoustic impedance enables many interesting acoustic applications. However, acoustic impedance for gas sensing is rare and difficult. Here we introduce a micro-nano surface acoustic wave (SAW) chip based on the acoustic impedance effect to achieve ultra-fast and wide-range gas sensing. We theoretically established the relationship between surface load acoustic impedance and SAW attenuation, and analyzed the influence of acoustic impedance on acoustic propagation loss under different gas/humidity media. Experimental measurements reveal that the differences in acoustic impedance generated by different gases trigger different acoustic attenuation, and can achieve wide-range (0-100 v/v%) gas monitoring, with ultra-fast response and recovery speeds reaching sub-second levels (t<sub>90</sub> < 1 s, t<sub>10</sub> < 0.5 s) and detection limit of ~1 v/v%. This capability can also be perfectly utilized for human respiratory monitoring, accurately reflecting respiratory status, frequency, and intensity. Consequently, the SAW chip based on the acoustic impedance effect provides a new solution for in-situ detection of gas leaks and precise monitoring of human respiration.</p>","PeriodicalId":72644,"journal":{"name":"Communications engineering","volume":"4 1","pages":"15"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787289/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s44172-025-00347-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Acoustic impedance enables many interesting acoustic applications. However, acoustic impedance for gas sensing is rare and difficult. Here we introduce a micro-nano surface acoustic wave (SAW) chip based on the acoustic impedance effect to achieve ultra-fast and wide-range gas sensing. We theoretically established the relationship between surface load acoustic impedance and SAW attenuation, and analyzed the influence of acoustic impedance on acoustic propagation loss under different gas/humidity media. Experimental measurements reveal that the differences in acoustic impedance generated by different gases trigger different acoustic attenuation, and can achieve wide-range (0-100 v/v%) gas monitoring, with ultra-fast response and recovery speeds reaching sub-second levels (t90 < 1 s, t10 < 0.5 s) and detection limit of ~1 v/v%. This capability can also be perfectly utilized for human respiratory monitoring, accurately reflecting respiratory status, frequency, and intensity. Consequently, the SAW chip based on the acoustic impedance effect provides a new solution for in-situ detection of gas leaks and precise monitoring of human respiration.

基于声阻抗的表面声波气体泄漏检测与呼吸监测芯片。
声阻抗使许多有趣的声学应用成为可能。然而,用于气体传感的声阻抗是罕见和困难的。本文介绍了一种基于声阻抗效应的微纳表面声波(SAW)芯片,以实现超快速、宽范围的气体传感。从理论上建立了表面载荷声阻抗与声呐衰减的关系,分析了不同气体/湿度介质下声阻抗对声传播损耗的影响。实验测量表明,不同气体产生的声阻抗差异会触发不同的声衰减,可以实现大范围(0-100 v/v%)的气体监测,具有超快的响应速度和亚秒级的恢复速度(t9010)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信