Peng Mei , Hamid Reza Karimi , Lei Ou , Hehui Xie , Chong Zhan , Guangyuan Li , Shichun Yang
{"title":"Driving style classification and recognition methods for connected vehicle control in intelligent transportation systems: A review","authors":"Peng Mei , Hamid Reza Karimi , Lei Ou , Hehui Xie , Chong Zhan , Guangyuan Li , Shichun Yang","doi":"10.1016/j.isatra.2025.01.033","DOIUrl":null,"url":null,"abstract":"<div><div>Advancements in intelligent vehicle technology have spurred extensive research into the impact of driving style (DS) on intelligent transportation systems (ITS), aiming to enhance vehicle safety, comfort, and energy efficiency. Accurate DS identification is pivotal for accelerating ITS adoption, especially in regions where its implementation is still in its infancy. This paper investigates the role of DS recognition methods, particularly clustering and classification techniques, in influencing connected vehicle control and optimizing speed planning within ITS. While traditional speed planning approaches focus on general traffic models, this study emphasizes the critical role of DS in shaping personalized and adaptive speed planning. The paper highlights three primary DS recognition approaches: rule-based, model-based, and learning-based methods, and introduces a framework for integrating DS recognition with speed planning, addressing aspects such as data collection, preprocessing, and classification techniques. This focus provides a novel perspective on leveraging DS recognition to enhance ITS adaptability.</div></div>","PeriodicalId":14660,"journal":{"name":"ISA transactions","volume":"158 ","pages":"Pages 167-183"},"PeriodicalIF":6.3000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0019057825000588","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Advancements in intelligent vehicle technology have spurred extensive research into the impact of driving style (DS) on intelligent transportation systems (ITS), aiming to enhance vehicle safety, comfort, and energy efficiency. Accurate DS identification is pivotal for accelerating ITS adoption, especially in regions where its implementation is still in its infancy. This paper investigates the role of DS recognition methods, particularly clustering and classification techniques, in influencing connected vehicle control and optimizing speed planning within ITS. While traditional speed planning approaches focus on general traffic models, this study emphasizes the critical role of DS in shaping personalized and adaptive speed planning. The paper highlights three primary DS recognition approaches: rule-based, model-based, and learning-based methods, and introduces a framework for integrating DS recognition with speed planning, addressing aspects such as data collection, preprocessing, and classification techniques. This focus provides a novel perspective on leveraging DS recognition to enhance ITS adaptability.
期刊介绍:
ISA Transactions serves as a platform for showcasing advancements in measurement and automation, catering to both industrial practitioners and applied researchers. It covers a wide array of topics within measurement, including sensors, signal processing, data analysis, and fault detection, supported by techniques such as artificial intelligence and communication systems. Automation topics encompass control strategies, modelling, system reliability, and maintenance, alongside optimization and human-machine interaction. The journal targets research and development professionals in control systems, process instrumentation, and automation from academia and industry.