REDD1 mediates HDM-induced nuclear-cytoplasmic translocation and release of IL-33 in airway epithelial cells by downregulating Nrf2.

IF 5.8 2区 医学 Q1 Medicine
Tian Luo, Wentao Ji, Yuxin Gong, Lichang Chen, Chao Liu, Dandan Zhang, Xi Li, Yanhua Lv
{"title":"REDD1 mediates HDM-induced nuclear-cytoplasmic translocation and release of IL-33 in airway epithelial cells by downregulating Nrf2.","authors":"Tian Luo, Wentao Ji, Yuxin Gong, Lichang Chen, Chao Liu, Dandan Zhang, Xi Li, Yanhua Lv","doi":"10.1186/s12931-025-03119-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>This study aims to investigate whether REDD1 (Regulated in Development and DNA Damage Responses 1) mediates the nuclear-to-cytoplasmic translocation and release of IL-33 in airway epithelial cells induced by house dust mites (HDM).</p><p><strong>Methods: </strong>REDD1 expression levels in bronchial asthma patients were validated using public databases, followed by immunohistochemical analysis of REDD1 protein in airway epithelial cells from these patients. An asthma model was then established using HDM-induced 16HBE cell lines, with REDD1 gene knockout performed. The relationship between varying levels of REDD1 expression, Nrf2, and related inflammatory factors was assessed using Western blot and qPCR. To further investigate the role of the REDD1-Nrf2-IL-33 axis in the development of asthma, we employed Nrf2 activators and inhibitors to reassess the impact of REDD1 on IL-33.</p><p><strong>Results: </strong>At both mRNA and protein levels, we found that REDD1 was significantly overexpressed in samples from asthma patients (P < 0.05). In vitro, 24-hour exposure to HDM induced a notable nuclear-to-cytoplasmic translocation of IL-33 and increased its levels in the culture medium of 16HBE cells. In addition, HDM treatment significantly upregulated the expression of both REDD1 and Nrf2. Knockdown of REDD1 markedly suppressed HDM-induced IL-33 release and the expression of TNF-α, IL-6, and IL-1β, while enhancing Nrf2 expression. Moreover, treatment with the Nrf2 agonist curcumin inhibited HDM-induced nuclear-to-cytoplasmic translocation and extracellular secretion of IL-33, whereas the opposite effect was observed when using the Nrf2 antagonist ML385.</p><p><strong>Conclusion: </strong>This study reveals the crucial regulatory role of the REDD1-Nrf2-IL-33 axis in the pathological process of bronchial asthma. REDD1 modulates the expression of IL-33 and other inflammatory factors through the Nrf2 signaling pathway, thereby influencing the onset and progression of asthma.</p><p><strong>Clinical trial number: </strong>Not applicable.</p>","PeriodicalId":49131,"journal":{"name":"Respiratory Research","volume":"26 1","pages":"47"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786574/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiratory Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12931-025-03119-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: This study aims to investigate whether REDD1 (Regulated in Development and DNA Damage Responses 1) mediates the nuclear-to-cytoplasmic translocation and release of IL-33 in airway epithelial cells induced by house dust mites (HDM).

Methods: REDD1 expression levels in bronchial asthma patients were validated using public databases, followed by immunohistochemical analysis of REDD1 protein in airway epithelial cells from these patients. An asthma model was then established using HDM-induced 16HBE cell lines, with REDD1 gene knockout performed. The relationship between varying levels of REDD1 expression, Nrf2, and related inflammatory factors was assessed using Western blot and qPCR. To further investigate the role of the REDD1-Nrf2-IL-33 axis in the development of asthma, we employed Nrf2 activators and inhibitors to reassess the impact of REDD1 on IL-33.

Results: At both mRNA and protein levels, we found that REDD1 was significantly overexpressed in samples from asthma patients (P < 0.05). In vitro, 24-hour exposure to HDM induced a notable nuclear-to-cytoplasmic translocation of IL-33 and increased its levels in the culture medium of 16HBE cells. In addition, HDM treatment significantly upregulated the expression of both REDD1 and Nrf2. Knockdown of REDD1 markedly suppressed HDM-induced IL-33 release and the expression of TNF-α, IL-6, and IL-1β, while enhancing Nrf2 expression. Moreover, treatment with the Nrf2 agonist curcumin inhibited HDM-induced nuclear-to-cytoplasmic translocation and extracellular secretion of IL-33, whereas the opposite effect was observed when using the Nrf2 antagonist ML385.

Conclusion: This study reveals the crucial regulatory role of the REDD1-Nrf2-IL-33 axis in the pathological process of bronchial asthma. REDD1 modulates the expression of IL-33 and other inflammatory factors through the Nrf2 signaling pathway, thereby influencing the onset and progression of asthma.

Clinical trial number: Not applicable.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Respiratory Research
Respiratory Research RESPIRATORY SYSTEM-
CiteScore
9.70
自引率
1.70%
发文量
314
审稿时长
4-8 weeks
期刊介绍: Respiratory Research publishes high-quality clinical and basic research, review and commentary articles on all aspects of respiratory medicine and related diseases. As the leading fully open access journal in the field, Respiratory Research provides an essential resource for pulmonologists, allergists, immunologists and other physicians, researchers, healthcare workers and medical students with worldwide dissemination of articles resulting in high visibility and generating international discussion. Topics of specific interest include asthma, chronic obstructive pulmonary disease, cystic fibrosis, genetics, infectious diseases, interstitial lung diseases, lung development, lung tumors, occupational and environmental factors, pulmonary circulation, pulmonary pharmacology and therapeutics, respiratory immunology, respiratory physiology, and sleep-related respiratory problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信