Spray vaccination with a safe and bivalent H9N2 recombinant chimeric NDV vector vaccine elicits complete protection against NDV and H9N2 AIV challenge.

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Xiaoquan Wang, Jing Dai, Wenhao Yang, Yao Yao, Jin Zhang, Kaituo Liu, Xiaolong Lu, Ruyi Gao, Yu Chen, Jiao Hu, Min Gu, Shunlin Hu, Xiufan Liu, Xiaowen Liu
{"title":"Spray vaccination with a safe and bivalent H9N2 recombinant chimeric NDV vector vaccine elicits complete protection against NDV and H9N2 AIV challenge.","authors":"Xiaoquan Wang, Jing Dai, Wenhao Yang, Yao Yao, Jin Zhang, Kaituo Liu, Xiaolong Lu, Ruyi Gao, Yu Chen, Jiao Hu, Min Gu, Shunlin Hu, Xiufan Liu, Xiaowen Liu","doi":"10.1186/s13567-025-01448-5","DOIUrl":null,"url":null,"abstract":"<p><p>Newcastle disease virus (NDV) and H9N2 avian influenza virus (AIV) represent significant pathogenic risks to the poultry industry, leading to considerable economic losses. Vaccination is a widely used preventive measure against these pathogens, yet the lack of a live bivalent vaccine targeting NDV and H9N2 AIV imposes a heavy vaccination burden. Previously, we constructed a genotype-matched chimeric NDV vector, LX-OAI4S, in which the genotype I NDV backbone was replaced with the ectodomain of haemagglutinin-neuraminidase (HN) and modified using the attenuated F gene from the genotype VII vaccine strain A-VII. Based on the LX-OAI4S vector, we successfully generated three H9N2 recombinant viruses: LX-OAI4S-NPU-HA, LX-OAI4S-MU-HA, and LX-OAI4S-HNU-HA. These recombinants incorporated the H9N2 HA gene, flanked by untranslated regions (UTRs) from the NP, M, or HN gene of the NDV LX strain, inserted between the P and M genes of LX-OAI4S. The vaccine candidate LX-OAI4S-NPU-HA induced a more robust immune response in chickens against H9N2 AIV and NDV than the other two recombinants. This response effectively protects against virus shedding and lethal virus challenge. Furthermore, spray vaccination with LX-OAI4S-NPU-HA showed protective efficacy against H9N2 AIV and NDV. This study offers a promising strategy for comprehensive protection in regions threatened by H9N2 AIV and NDV.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"24"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786375/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01448-5","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Newcastle disease virus (NDV) and H9N2 avian influenza virus (AIV) represent significant pathogenic risks to the poultry industry, leading to considerable economic losses. Vaccination is a widely used preventive measure against these pathogens, yet the lack of a live bivalent vaccine targeting NDV and H9N2 AIV imposes a heavy vaccination burden. Previously, we constructed a genotype-matched chimeric NDV vector, LX-OAI4S, in which the genotype I NDV backbone was replaced with the ectodomain of haemagglutinin-neuraminidase (HN) and modified using the attenuated F gene from the genotype VII vaccine strain A-VII. Based on the LX-OAI4S vector, we successfully generated three H9N2 recombinant viruses: LX-OAI4S-NPU-HA, LX-OAI4S-MU-HA, and LX-OAI4S-HNU-HA. These recombinants incorporated the H9N2 HA gene, flanked by untranslated regions (UTRs) from the NP, M, or HN gene of the NDV LX strain, inserted between the P and M genes of LX-OAI4S. The vaccine candidate LX-OAI4S-NPU-HA induced a more robust immune response in chickens against H9N2 AIV and NDV than the other two recombinants. This response effectively protects against virus shedding and lethal virus challenge. Furthermore, spray vaccination with LX-OAI4S-NPU-HA showed protective efficacy against H9N2 AIV and NDV. This study offers a promising strategy for comprehensive protection in regions threatened by H9N2 AIV and NDV.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信