Tingting Xu , Yi Peng , Yanan Xu , Jing Zhu , Qiao Yang , Yali Liu , Hefeng Yang
{"title":"Exploring the therapeutic potential of small extracellular vesicles derived from induced pluripotent stem cell in periodontal regeneration","authors":"Tingting Xu , Yi Peng , Yanan Xu , Jing Zhu , Qiao Yang , Yali Liu , Hefeng Yang","doi":"10.1016/j.job.2025.100621","DOIUrl":null,"url":null,"abstract":"<div><h3>Objectives</h3><div>To investigate the role of small extracellular vesicles derived from induced pluripotent stem cells (iPSC-sEVs) in periodontal tissue regeneration, elucidate their potential molecular mechanisms, and provide theoretical guidance for the clinical application of iPSC-sEVs as a cell-free therapeutic strategy for periodontal tissue regeneration.</div></div><div><h3>Methods</h3><div>We investigated the effects of iPSC-sEVs on the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in vitro. The regenerative potential of iPSC-sEVs was evaluated in vivo, using a periodontal defect model. Bulk RNA sequencing was performed to elucidate the underlying molecular mechanisms.</div></div><div><h3>Results</h3><div>iPSC-sEVs were isolated, characterized, and systemically evaluated for regenerative potential. The results revealed that treatment with iPSC-sEVs significantly enhanced the proliferation, migration, and osteogenic differentiation of PDLSCs. In situ treatment with iPSC-sEVs loaded onto collagen sponges was performed in a rat model of periodontal defects. Micro-CT and histological analyses indicated that iPSC-sEV treatment markedly promoted alveolar bone repair and periodontal ligament regeneration. Mechanistically, the analysis of bulk RNA sequencing data coupled with experimental validation revealed that iPSC-sEV treatment significantly activated the mitogen-activated protein kinase (MAPK) signaling pathway in PDLSCs. Further investigation showed that the inhibition of this pathway completely abolished the proliferative effects of iPSC-sEVs on PDLSCs.</div></div><div><h3>Conclusions</h3><div>iPSC-sEVs promote PDLSC proliferation through MAPK signaling pathway activation, while also enhancing PDLSC migratory and osteogenic differentiation capacities, facilitates the repair and regeneration of damaged periodontal tissue and presents a potential novel therapeutic strategy for clinical periodontal tissue regeneration.</div></div>","PeriodicalId":45851,"journal":{"name":"Journal of Oral Biosciences","volume":"67 1","pages":"Article 100621"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Oral Biosciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1349007925000106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives
To investigate the role of small extracellular vesicles derived from induced pluripotent stem cells (iPSC-sEVs) in periodontal tissue regeneration, elucidate their potential molecular mechanisms, and provide theoretical guidance for the clinical application of iPSC-sEVs as a cell-free therapeutic strategy for periodontal tissue regeneration.
Methods
We investigated the effects of iPSC-sEVs on the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs) in vitro. The regenerative potential of iPSC-sEVs was evaluated in vivo, using a periodontal defect model. Bulk RNA sequencing was performed to elucidate the underlying molecular mechanisms.
Results
iPSC-sEVs were isolated, characterized, and systemically evaluated for regenerative potential. The results revealed that treatment with iPSC-sEVs significantly enhanced the proliferation, migration, and osteogenic differentiation of PDLSCs. In situ treatment with iPSC-sEVs loaded onto collagen sponges was performed in a rat model of periodontal defects. Micro-CT and histological analyses indicated that iPSC-sEV treatment markedly promoted alveolar bone repair and periodontal ligament regeneration. Mechanistically, the analysis of bulk RNA sequencing data coupled with experimental validation revealed that iPSC-sEV treatment significantly activated the mitogen-activated protein kinase (MAPK) signaling pathway in PDLSCs. Further investigation showed that the inhibition of this pathway completely abolished the proliferative effects of iPSC-sEVs on PDLSCs.
Conclusions
iPSC-sEVs promote PDLSC proliferation through MAPK signaling pathway activation, while also enhancing PDLSC migratory and osteogenic differentiation capacities, facilitates the repair and regeneration of damaged periodontal tissue and presents a potential novel therapeutic strategy for clinical periodontal tissue regeneration.