{"title":"Trametinib alleviates lipopolysaccharide-induced acute kidney injury by inhibiting macrophage polarization through the PI3K/Akt pathway.","authors":"Yingqi Zeng, Wenjia Yuan, Chen Feng, Longkai Peng, Xubiao Xie, Fenghua Peng, Tengfang Li, Minjie Lin, Hedong Zhang, Helong Dai","doi":"10.1016/j.trim.2025.102183","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sepsis-induced acute kidney injury (AKI) is a severe condition characterized by dysregulation of pro- and anti-inflammatory responses. Targeting macrophage polarization between pro-inflammatory M1 and anti-inflammatory M2 cells offers a potential therapeutic approach for AKI. Trametinib (TRAM), an inhibitor of the MEK1/2 signaling pathway, was evaluated for its impact on M1/M2 polarization in AKI.</p><p><strong>Methods: </strong>Wild-type (WT) mice were subjected to lipopolysaccharide (LPS)-induced AKI and intraperitoneally treated with dimethyl sulfoxide (DMSO) or TRAM (10 mg/kg) for three days. Renal function was assessed by measuring creatinine levels. While histopathological changes, RNA sequencing data, and serum cytokine levels were analyzed. Macrophage M1/M2 polarization in kidney tissues was examined using flow cytometry and immunohistochemistry. Murine bone marrow-derived macrophages (BMDMs) were polarized to the M1 or M2 phenotype in vivo and treated with or without TRAM (10 μM). M1/M2 polarization was analyzed via flow cytometry, and PI3K/Akt signaling was evaluated by western blotting.</p><p><strong>Results: </strong>TRAM significantly improved renal function, as demonstrated by reduced serum creatinine levels (p < 0.01) and ameliorated histopathological damage (p < 0.01). Flow cytometry and immunohistochemistry revealed that TRAM markedly inhibited pro-inflammatory M1 macrophage polarization (p < 0.001). Additionally, TRAM reduced serum level of IFN-γ (p < 0.01) and IL-17 (p < 0.001). In vitro, TRAM suppressed M1 polarization (p < 0.05) by inhibiting the PI3K/Akt signaling pathway.</p><p><strong>Conclusion: </strong>TRAM mitigated LPS-induced AKI by suppressing M1 macrophage polarization via the PI3K/Akt pathway, highlighting its therapeutic potential for AKI and other inflammatory kidney diseases.</p>","PeriodicalId":23304,"journal":{"name":"Transplant immunology","volume":" ","pages":"102183"},"PeriodicalIF":1.6000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transplant immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.trim.2025.102183","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Sepsis-induced acute kidney injury (AKI) is a severe condition characterized by dysregulation of pro- and anti-inflammatory responses. Targeting macrophage polarization between pro-inflammatory M1 and anti-inflammatory M2 cells offers a potential therapeutic approach for AKI. Trametinib (TRAM), an inhibitor of the MEK1/2 signaling pathway, was evaluated for its impact on M1/M2 polarization in AKI.
Methods: Wild-type (WT) mice were subjected to lipopolysaccharide (LPS)-induced AKI and intraperitoneally treated with dimethyl sulfoxide (DMSO) or TRAM (10 mg/kg) for three days. Renal function was assessed by measuring creatinine levels. While histopathological changes, RNA sequencing data, and serum cytokine levels were analyzed. Macrophage M1/M2 polarization in kidney tissues was examined using flow cytometry and immunohistochemistry. Murine bone marrow-derived macrophages (BMDMs) were polarized to the M1 or M2 phenotype in vivo and treated with or without TRAM (10 μM). M1/M2 polarization was analyzed via flow cytometry, and PI3K/Akt signaling was evaluated by western blotting.
Results: TRAM significantly improved renal function, as demonstrated by reduced serum creatinine levels (p < 0.01) and ameliorated histopathological damage (p < 0.01). Flow cytometry and immunohistochemistry revealed that TRAM markedly inhibited pro-inflammatory M1 macrophage polarization (p < 0.001). Additionally, TRAM reduced serum level of IFN-γ (p < 0.01) and IL-17 (p < 0.001). In vitro, TRAM suppressed M1 polarization (p < 0.05) by inhibiting the PI3K/Akt signaling pathway.
Conclusion: TRAM mitigated LPS-induced AKI by suppressing M1 macrophage polarization via the PI3K/Akt pathway, highlighting its therapeutic potential for AKI and other inflammatory kidney diseases.
期刊介绍:
Transplant Immunology will publish up-to-date information on all aspects of the broad field it encompasses. The journal will be directed at (basic) scientists, tissue typers, transplant physicians and surgeons, and research and data on all immunological aspects of organ-, tissue- and (haematopoietic) stem cell transplantation are of potential interest to the readers of Transplant Immunology. Original papers, Review articles and Hypotheses will be considered for publication and submitted manuscripts will be rapidly peer-reviewed and published. They will be judged on the basis of scientific merit, originality, timeliness and quality.