Shi-Xia Liao, Lan-Ying Zhang, Ling-Mei Shi, Huai-Yu Hu, Yan-Hui Gu, Ting-Hua Wang, Yao Ouyang, Peng-Peng Sun
{"title":"Integrating bulk and single-cell RNA sequencing data: unveiling RNA methylation and autophagy-related signatures in chronic obstructive pulmonary disease patients.","authors":"Shi-Xia Liao, Lan-Ying Zhang, Ling-Mei Shi, Huai-Yu Hu, Yan-Hui Gu, Ting-Hua Wang, Yao Ouyang, Peng-Peng Sun","doi":"10.1038/s41598-025-87437-2","DOIUrl":null,"url":null,"abstract":"<p><p>Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous lung disease influenced by epigenetic modifications, particularly RNA methylation. Emerging evidence also suggests that autophagy plays a crucial role in immune cell infiltration and is implicated in COPD progression. This study aimed to investigate key RNA methylation regulators and explore the roles of RNA methylation and autophagy in COPD pathogenesis. We analyzed tissue-based bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) datasets from COPD and non-COPD patients, sourced from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified between COPD and non-COPD samples, and protein-protein interaction networks were constructed. Univariate logistic regression identified shared genes between DEGs and RNA methylation gene sets. Functional enrichment analyses, including Gene Ontology (GO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA), were performed. Weighted gene co-expression network analysis (WGCNA) and immune infiltration analysis were conducted. Integration with scRNA-seq data further elucidated changes in immune cell composition, and cell communication analysis assessed interactions between macrophages and other immune cells. AddModuleScore analysis quantified RNA methylation and autophagy effects. Finally, a COPD mouse model was used to validate the expression of critical RNA methylation genes (FTO and IGF2BP2) in lung macrophages via RT-qPCR and flow cytometry. As revealed, we identified 13 RNA methylation-related genes enriched in translation and methylation processes. GSEA and GSVA revealed significant enrichment of these genes in immune and autophagy pathways. WGCNA analysis pinpointed key hub genes linking RNA methylation and autophagy. Integrated scRNA-seq analysis demonstrated a marked reduction of macrophages in COPD, with FTO and IGF2BP2 emerging as critical RNA methylation regulators. Macrophages with elevated RNA methylation and autophagy scores had increased interactions with other immune cells. In COPD mouse models, decreased expression of FTO and IGF2BP2 in lung macrophages was validated. Taken together, this study highlights the significant roles of RNA methylation in relation to autophagy pathways in the context of COPD. We identified key RNA methylation-related hub genes, such as FTO and IGF2BP2, which were found to have decreased expression in COPD macrophages. These findings provide novel genetic insights into the epigenetic mechanisms of COPD and suggest potential avenues for developing diagnostic and therapeutic strategies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"4005"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787343/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-87437-2","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous lung disease influenced by epigenetic modifications, particularly RNA methylation. Emerging evidence also suggests that autophagy plays a crucial role in immune cell infiltration and is implicated in COPD progression. This study aimed to investigate key RNA methylation regulators and explore the roles of RNA methylation and autophagy in COPD pathogenesis. We analyzed tissue-based bulk RNA sequencing and single-cell RNA sequencing (scRNA-seq) datasets from COPD and non-COPD patients, sourced from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified between COPD and non-COPD samples, and protein-protein interaction networks were constructed. Univariate logistic regression identified shared genes between DEGs and RNA methylation gene sets. Functional enrichment analyses, including Gene Ontology (GO), gene set enrichment analysis (GSEA), and gene set variation analysis (GSVA), were performed. Weighted gene co-expression network analysis (WGCNA) and immune infiltration analysis were conducted. Integration with scRNA-seq data further elucidated changes in immune cell composition, and cell communication analysis assessed interactions between macrophages and other immune cells. AddModuleScore analysis quantified RNA methylation and autophagy effects. Finally, a COPD mouse model was used to validate the expression of critical RNA methylation genes (FTO and IGF2BP2) in lung macrophages via RT-qPCR and flow cytometry. As revealed, we identified 13 RNA methylation-related genes enriched in translation and methylation processes. GSEA and GSVA revealed significant enrichment of these genes in immune and autophagy pathways. WGCNA analysis pinpointed key hub genes linking RNA methylation and autophagy. Integrated scRNA-seq analysis demonstrated a marked reduction of macrophages in COPD, with FTO and IGF2BP2 emerging as critical RNA methylation regulators. Macrophages with elevated RNA methylation and autophagy scores had increased interactions with other immune cells. In COPD mouse models, decreased expression of FTO and IGF2BP2 in lung macrophages was validated. Taken together, this study highlights the significant roles of RNA methylation in relation to autophagy pathways in the context of COPD. We identified key RNA methylation-related hub genes, such as FTO and IGF2BP2, which were found to have decreased expression in COPD macrophages. These findings provide novel genetic insights into the epigenetic mechanisms of COPD and suggest potential avenues for developing diagnostic and therapeutic strategies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.