Reduced connection strength leads to enhancement of working memory capacity in cognitive training

IF 4.7 2区 医学 Q1 NEUROIMAGING
Guiyang Lv , Tianyong Xu , Jinhang Li , Ping Zhu , Feiyan Chen , Dongping Yang , Guoguang He
{"title":"Reduced connection strength leads to enhancement of working memory capacity in cognitive training","authors":"Guiyang Lv ,&nbsp;Tianyong Xu ,&nbsp;Jinhang Li ,&nbsp;Ping Zhu ,&nbsp;Feiyan Chen ,&nbsp;Dongping Yang ,&nbsp;Guoguang He","doi":"10.1016/j.neuroimage.2025.121055","DOIUrl":null,"url":null,"abstract":"<div><div>It has been widely observed that cognitive training can enhance the working memory capacity (WMC) of participants, yet the underlying mechanisms remain unexplained. Previous research has confirmed that abacus-based mental calculation (AMC) training can enhance the WMC of subjects and suggested its possible association with changes in functional connectivity. With fMRI data, we construct whole brain resting state connectivity of subjects who underwent long-term AMC training and other subjects from a control group. Their working memory capacity is simulated based on their whole brain resting state connectivity and reservoir computing. It is found that the AMC group has higher WMC than the control group, and especially the WMC involved in the frontoparietal network (FPN), visual network (VIS) and sensorimotor network (SMN) associated with the AMC training is even higher in the AMC group. However, the advantage of the AMC group disappears if the connection strengths between brain regions are neglected. The effects on WMC from the connection strength differences between the AMC and control groups are evaluated. The results show that the WMC of the control group is enhanced and achieved consistency with or even better than that the AMC group if the connection strength of the control group are weakened. And the advantage of FPN, VIS and SMN is reproduced too. In conclusion, our work reveals a correlation between reduction in functional connection strength and enhancements in the WMC of subjects undergoing cognitive training.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"308 ","pages":"Article 121055"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000576","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

It has been widely observed that cognitive training can enhance the working memory capacity (WMC) of participants, yet the underlying mechanisms remain unexplained. Previous research has confirmed that abacus-based mental calculation (AMC) training can enhance the WMC of subjects and suggested its possible association with changes in functional connectivity. With fMRI data, we construct whole brain resting state connectivity of subjects who underwent long-term AMC training and other subjects from a control group. Their working memory capacity is simulated based on their whole brain resting state connectivity and reservoir computing. It is found that the AMC group has higher WMC than the control group, and especially the WMC involved in the frontoparietal network (FPN), visual network (VIS) and sensorimotor network (SMN) associated with the AMC training is even higher in the AMC group. However, the advantage of the AMC group disappears if the connection strengths between brain regions are neglected. The effects on WMC from the connection strength differences between the AMC and control groups are evaluated. The results show that the WMC of the control group is enhanced and achieved consistency with or even better than that the AMC group if the connection strength of the control group are weakened. And the advantage of FPN, VIS and SMN is reproduced too. In conclusion, our work reveals a correlation between reduction in functional connection strength and enhancements in the WMC of subjects undergoing cognitive training.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信