Development of PLGA-SPC3 functionalized gefitinib mesoporous silica nano-scaffolds for breast cancer targeting: biodistribution and cytotoxicity analysis.
{"title":"Development of PLGA-SPC3 functionalized gefitinib mesoporous silica nano-scaffolds for breast cancer targeting: biodistribution and cytotoxicity analysis.","authors":"Ravi Kumar Sah, Sajeev Kumar B","doi":"10.1080/10837450.2025.2460732","DOIUrl":null,"url":null,"abstract":"<p><p>The exploration of novel carriers for cancer treatments is on the rise, as drugs are often hindered by ineffective delivery. In the present study, Mesoporous silica nano scaffolds were developed by a novel heat assisted hydrolysis (HAH) technique, and were functionalized using PLGA. These carriers were further loaded with nanosized Gefitinib (GTB). The surface properties of MSNs (GTB-PEG-PLGA-MSN) were enhanced using 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (SPC3). The MSNs were characterized for pore volume, particle size, zeta potential (ZP), surface area, entrapment efficiency (%EE), and drug content. The <i>in vitro</i> drug release kinetics, cytotoxicity analysis, and <i>in vivo</i> biodistribution studies were performed in optimized MSN using Albino Wistar rats. The result shows an increase in surface area, pore volume, %EE, and drug loading in MSN. <i>In vitro</i> cytotoxicity of optimized F5-GTB-PEG-PLGA-SPC3-MSN demonstrated a higher antitumor activity (43.84 ± 0.63%, <i>p <</i> 0.05) in comparison to free drug. A higher GTB was detected in the liver (29,415 ± 126 ng) indicating significant biodistribution (<i>p</i> > 0.05). The <i>in vitro</i> studies in the MCF-7 cell line signify an increase in cell viability demonstrating its efficacy in breast cancer. Optimized F5-GTB-PEG-PLGA-SPC3-MSN offers improved cellular uptake, biodistribution, and higher antitumor suppression with less toxicity. To conclude, the HAH technique produced stable MSNs, and PLGA-SPC3 functionalized MSN nano scaffolds could be an ideal carrier for cancer drug delivery.</p>","PeriodicalId":20004,"journal":{"name":"Pharmaceutical Development and Technology","volume":" ","pages":"160-176"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Development and Technology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10837450.2025.2460732","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/13 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploration of novel carriers for cancer treatments is on the rise, as drugs are often hindered by ineffective delivery. In the present study, Mesoporous silica nano scaffolds were developed by a novel heat assisted hydrolysis (HAH) technique, and were functionalized using PLGA. These carriers were further loaded with nanosized Gefitinib (GTB). The surface properties of MSNs (GTB-PEG-PLGA-MSN) were enhanced using 1-oleoyl-2-hydroxy-sn-glycero-3-phosphocholine (SPC3). The MSNs were characterized for pore volume, particle size, zeta potential (ZP), surface area, entrapment efficiency (%EE), and drug content. The in vitro drug release kinetics, cytotoxicity analysis, and in vivo biodistribution studies were performed in optimized MSN using Albino Wistar rats. The result shows an increase in surface area, pore volume, %EE, and drug loading in MSN. In vitro cytotoxicity of optimized F5-GTB-PEG-PLGA-SPC3-MSN demonstrated a higher antitumor activity (43.84 ± 0.63%, p < 0.05) in comparison to free drug. A higher GTB was detected in the liver (29,415 ± 126 ng) indicating significant biodistribution (p > 0.05). The in vitro studies in the MCF-7 cell line signify an increase in cell viability demonstrating its efficacy in breast cancer. Optimized F5-GTB-PEG-PLGA-SPC3-MSN offers improved cellular uptake, biodistribution, and higher antitumor suppression with less toxicity. To conclude, the HAH technique produced stable MSNs, and PLGA-SPC3 functionalized MSN nano scaffolds could be an ideal carrier for cancer drug delivery.
期刊介绍:
Pharmaceutical Development & Technology publishes research on the design, development, manufacture, and evaluation of conventional and novel drug delivery systems, emphasizing practical solutions and applications to theoretical and research-based problems. The journal aims to publish significant, innovative and original research to advance the frontiers of pharmaceutical development and technology.
Through original articles, reviews (where prior discussion with the EIC is encouraged), short reports, book reviews and technical notes, Pharmaceutical Development & Technology covers aspects such as:
-Preformulation and pharmaceutical formulation studies
-Pharmaceutical materials selection and characterization
-Pharmaceutical process development, engineering, scale-up and industrialisation, and process validation
-QbD in the form a risk assessment and DoE driven approaches
-Design of dosage forms and drug delivery systems
-Emerging pharmaceutical formulation and drug delivery technologies with a focus on personalised therapies
-Drug delivery systems research and quality improvement
-Pharmaceutical regulatory affairs
This journal will not consider for publication manuscripts focusing purely on clinical evaluations, botanicals, or animal models.