{"title":"Harnessing the Power of Electrical Penetration Graph (EPG) Technology to Understand Psyllid-Transmitted Fastidious Bacterial Diseases.","authors":"Nabil Killiny, Alberto Fereres","doi":"10.1094/PHYTO-11-24-0376-RVW","DOIUrl":null,"url":null,"abstract":"<p><p>Psyllids, also called plant lice, are hemipteran insects that feed on phloem sap. In addition to the direct damage they cause to plants, they are vectors of many phloem-restricted bacterial pathogens belonging to the '<i>Candidatus</i> Liberibacter' spp. and '<i>Candidatus</i> Phytoplasma' spp. from the apple proliferation group (16SrX). Although '<i>Candidatus</i> Liberibacter' spp. cells possess cell walls unlike the phytoplasmas, they both share a reduced genome and unavailability in culture. In addition, psyllids transmit both species of bacteria in a persistent, circulative, and propagative manner. Because of the similarity of these pathosystems, electrical penetration graph (EPG) was employed to study the probing behavior of psyllids. Such studies may assist in understanding the specific interactions between the fastidious bacteria, plant hosts, and insect vectors and lead to innovative control strategies. Herein, we discuss the potential of EPG to study and understand the tritrophic interactions that secure a successful transmission from plant to plant. In addition, the use of EPG in evaluating psyllid control strategies including pesticides and tolerant varieties is reviewed.</p>","PeriodicalId":20410,"journal":{"name":"Phytopathology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Phytopathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1094/PHYTO-11-24-0376-RVW","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Psyllids, also called plant lice, are hemipteran insects that feed on phloem sap. In addition to the direct damage they cause to plants, they are vectors of many phloem-restricted bacterial pathogens belonging to the 'Candidatus Liberibacter' spp. and 'Candidatus Phytoplasma' spp. from the apple proliferation group (16SrX). Although 'Candidatus Liberibacter' spp. cells possess cell walls unlike the phytoplasmas, they both share a reduced genome and unavailability in culture. In addition, psyllids transmit both species of bacteria in a persistent, circulative, and propagative manner. Because of the similarity of these pathosystems, electrical penetration graph (EPG) was employed to study the probing behavior of psyllids. Such studies may assist in understanding the specific interactions between the fastidious bacteria, plant hosts, and insect vectors and lead to innovative control strategies. Herein, we discuss the potential of EPG to study and understand the tritrophic interactions that secure a successful transmission from plant to plant. In addition, the use of EPG in evaluating psyllid control strategies including pesticides and tolerant varieties is reviewed.
期刊介绍:
Phytopathology publishes articles on fundamental research that advances understanding of the nature of plant diseases, the agents that cause them, their spread, the losses they cause, and measures that can be used to control them. Phytopathology considers manuscripts covering all aspects of plant diseases including bacteriology, host-parasite biochemistry and cell biology, biological control, disease control and pest management, description of new pathogen species description of new pathogen species, ecology and population biology, epidemiology, disease etiology, host genetics and resistance, mycology, nematology, plant stress and abiotic disorders, postharvest pathology and mycotoxins, and virology. Papers dealing mainly with taxonomy, such as descriptions of new plant pathogen taxa are acceptable if they include plant disease research results such as pathogenicity, host range, etc. Taxonomic papers that focus on classification, identification, and nomenclature below the subspecies level may also be submitted to Phytopathology.