High resolution multi-delay arterial spin labeling with self-supervised deep learning denoising for pediatric choroid plexus perfusion MRI

IF 4.7 2区 医学 Q1 NEUROIMAGING
Qinyang Shou , Chenyang Zhao , Xingfeng Shao , Megan M Herting , Danny JJ Wang
{"title":"High resolution multi-delay arterial spin labeling with self-supervised deep learning denoising for pediatric choroid plexus perfusion MRI","authors":"Qinyang Shou ,&nbsp;Chenyang Zhao ,&nbsp;Xingfeng Shao ,&nbsp;Megan M Herting ,&nbsp;Danny JJ Wang","doi":"10.1016/j.neuroimage.2025.121070","DOIUrl":null,"url":null,"abstract":"<div><div>Choroid plexus (CP) is an important brain structure that produces cerebrospinal fluid (CSF). CP perfusion has been studied using multi-delay arterial spin labeling (MD-ASL) in adults but not in pediatric populations due to the challenge of small CP size in children. Here we present a high resolution (iso2 mm) MDASL protocol with 10-minute scan time and performed test-retest scans on 21 typically developing children aged 8 to 17 years. We further proposed a Transformer-based deep learning (DL) model with k-space weighted image average (KWIA) denoised images as reference for training the model. The performance of the model was evaluated by the SNR, bias and repeatability of the fitted perfusion parameters of the CP and gray matter. The proposed method was compared to several benchmark methods including KWIA, joint denoising and reconstruction with total generalized variation (TGV) regularization, as well as another self-supervised method termed Noise2Void. The results show that the proposed Transformer model with KWIA reference can effectively denoise multi-delay ASL images, not only improving the SNR for perfusion images of each delay, but also improving the SNR for the fitted perfusion maps for visualizing and quantifying CP perfusion in children. This may facilitate the use of MDASL in neurodevelopmental studies to characterize the development of CP and glymphatic system.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"308 ","pages":"Article 121070"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000722","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Choroid plexus (CP) is an important brain structure that produces cerebrospinal fluid (CSF). CP perfusion has been studied using multi-delay arterial spin labeling (MD-ASL) in adults but not in pediatric populations due to the challenge of small CP size in children. Here we present a high resolution (iso2 mm) MDASL protocol with 10-minute scan time and performed test-retest scans on 21 typically developing children aged 8 to 17 years. We further proposed a Transformer-based deep learning (DL) model with k-space weighted image average (KWIA) denoised images as reference for training the model. The performance of the model was evaluated by the SNR, bias and repeatability of the fitted perfusion parameters of the CP and gray matter. The proposed method was compared to several benchmark methods including KWIA, joint denoising and reconstruction with total generalized variation (TGV) regularization, as well as another self-supervised method termed Noise2Void. The results show that the proposed Transformer model with KWIA reference can effectively denoise multi-delay ASL images, not only improving the SNR for perfusion images of each delay, but also improving the SNR for the fitted perfusion maps for visualizing and quantifying CP perfusion in children. This may facilitate the use of MDASL in neurodevelopmental studies to characterize the development of CP and glymphatic system.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信