Accumulation of theanine in tea plant (Camellia sinensis (L.) O. Kuntze): Biosynthesis, transportation and strategy for improvement

IF 4.2 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Qianting Luo , Hua-Feng He
{"title":"Accumulation of theanine in tea plant (Camellia sinensis (L.) O. Kuntze): Biosynthesis, transportation and strategy for improvement","authors":"Qianting Luo ,&nbsp;Hua-Feng He","doi":"10.1016/j.plantsci.2025.112406","DOIUrl":null,"url":null,"abstract":"<div><div>Theanine, specifically biosynthesized and accumulated in <em>Camellia sinensis</em> (L.) O. Kuntze, is widely recognized as the most positive ingredient related to the quality of tea. Therefore, genetic factors related to the biosynthesis of theanine in tea plant, CsAlaDC, CsGGTs and CsMYBs, etc., were elaborated and proved to be influential. Oppositely, TFs acting on the growth and development of tea plants, CsPIF, CsHO as well as CsGDH were demonstrated to be negative for biosynthesis of theanine. Since root is the original assembly site, transportation is indispensable for the accumulation of theanine in leaf. CsAAP7.2 was elucidated to be involved in the transportation of theanine crossing the vascular system to vegetative tissues. In order to promote the accumulation of theanine, strategies were proposed in aspect of processing, cultivation, fertilizer as well as germplasm innovation. Appropriate processing technology, scientific planting manner and fertilizer application, coupling with domestication of excellent varieties portrayed out the future orientation of theanine. Purpose of the review was to summarize advantages achieved in related to metabolism of theanine, and to motivate more intensive and more effective means to promote the accumulation of theanine in tea plant.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"352 ","pages":"Article 112406"},"PeriodicalIF":4.2000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225000238","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Theanine, specifically biosynthesized and accumulated in Camellia sinensis (L.) O. Kuntze, is widely recognized as the most positive ingredient related to the quality of tea. Therefore, genetic factors related to the biosynthesis of theanine in tea plant, CsAlaDC, CsGGTs and CsMYBs, etc., were elaborated and proved to be influential. Oppositely, TFs acting on the growth and development of tea plants, CsPIF, CsHO as well as CsGDH were demonstrated to be negative for biosynthesis of theanine. Since root is the original assembly site, transportation is indispensable for the accumulation of theanine in leaf. CsAAP7.2 was elucidated to be involved in the transportation of theanine crossing the vascular system to vegetative tissues. In order to promote the accumulation of theanine, strategies were proposed in aspect of processing, cultivation, fertilizer as well as germplasm innovation. Appropriate processing technology, scientific planting manner and fertilizer application, coupling with domestication of excellent varieties portrayed out the future orientation of theanine. Purpose of the review was to summarize advantages achieved in related to metabolism of theanine, and to motivate more intensive and more effective means to promote the accumulation of theanine in tea plant.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Science
Plant Science 生物-生化与分子生物学
CiteScore
9.10
自引率
1.90%
发文量
322
审稿时长
33 days
期刊介绍: Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment. Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信