Mevhibe Saricaoglu , Meryem Ayşe Yücel , Miray Budak , Ahmet Omurtag , Lutfu Hanoglu
{"title":"Different cortex activation between young and middle-aged people during different type problem-solving: An EEG&fNIRS study","authors":"Mevhibe Saricaoglu , Meryem Ayşe Yücel , Miray Budak , Ahmet Omurtag , Lutfu Hanoglu","doi":"10.1016/j.neuroimage.2025.121062","DOIUrl":null,"url":null,"abstract":"<div><div>Problem-solving strategies vary depending on the type of problem and aging. This study investigated the hemodynamic response measured by the changes in the oxyhemoglobin concentration (HbO), alpha frequency power, and their interrelation during problem-solving in healthy young and middle-aged individuals, employing combined electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) recordings. The study included 39 young and 30 middle-aged subjects. The brain activation that occurred while answering different questions was recorded using combined EEG and fNIRS. During the EEG & fNIRS recording, four questions (arithmetic, general knowledge, insight, and basic operation) were used for problem-solving. Alpha power (8–13 Hz) and HbO changes were analyzed. The behavioral results indicated significant differences between age groups in various question types. While the middle-aged group performed better on the general knowledge questions, the older group performed better on the insight and four-process questions. The fNIRS results reveal significant differences in brain activation during problem-solving tasks, particularly in regions like DLPFC/TA, STG, pSSC/Wernicke, and STG/angular gyrus Wernicke's area. The young group with the highest HbO was recorded during arithmetic questions, general knowledge questions, and basic operation questions. In contrast, there was no significant highest HbO during insight questions. Similar findings were observed in the middle-aged group, with the highest HbO recorded during general knowledge questions. However, there was no significant HbO in other channels during the solving of other question types in this group. The alpha power varied across different electrodes for various question types in both young and middle-aged groups. The highest alpha frequency band power for different electrodes was recorded while solving general knowledge questions in the young group and insight questions in the middle-aged group. Finally, the EEG and fNIRS correlation results showed positive correlations between HbO and alpha frequency band power in specific brain regions while solving general knowledge questions, particularly in the middle-aged group.</div><div>The study reveals age-related differences in behavioral performance, brain activation patterns, and neural correlates during various cognitive tasks, showcasing distinct strengths between middle-aged and young individuals in specific question types.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"308 ","pages":"Article 121062"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000643","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Problem-solving strategies vary depending on the type of problem and aging. This study investigated the hemodynamic response measured by the changes in the oxyhemoglobin concentration (HbO), alpha frequency power, and their interrelation during problem-solving in healthy young and middle-aged individuals, employing combined electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) recordings. The study included 39 young and 30 middle-aged subjects. The brain activation that occurred while answering different questions was recorded using combined EEG and fNIRS. During the EEG & fNIRS recording, four questions (arithmetic, general knowledge, insight, and basic operation) were used for problem-solving. Alpha power (8–13 Hz) and HbO changes were analyzed. The behavioral results indicated significant differences between age groups in various question types. While the middle-aged group performed better on the general knowledge questions, the older group performed better on the insight and four-process questions. The fNIRS results reveal significant differences in brain activation during problem-solving tasks, particularly in regions like DLPFC/TA, STG, pSSC/Wernicke, and STG/angular gyrus Wernicke's area. The young group with the highest HbO was recorded during arithmetic questions, general knowledge questions, and basic operation questions. In contrast, there was no significant highest HbO during insight questions. Similar findings were observed in the middle-aged group, with the highest HbO recorded during general knowledge questions. However, there was no significant HbO in other channels during the solving of other question types in this group. The alpha power varied across different electrodes for various question types in both young and middle-aged groups. The highest alpha frequency band power for different electrodes was recorded while solving general knowledge questions in the young group and insight questions in the middle-aged group. Finally, the EEG and fNIRS correlation results showed positive correlations between HbO and alpha frequency band power in specific brain regions while solving general knowledge questions, particularly in the middle-aged group.
The study reveals age-related differences in behavioral performance, brain activation patterns, and neural correlates during various cognitive tasks, showcasing distinct strengths between middle-aged and young individuals in specific question types.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.