Sera Nakisli, Kayleigh Fanelli, Julia LaComb, Lily J Arnold, Corinne M Nielsen
{"title":"CNS resident macrophages exhibit region-specific states and immunogenic responses during Rbpj-deficient brain arteriovenous malformation.","authors":"Sera Nakisli, Kayleigh Fanelli, Julia LaComb, Lily J Arnold, Corinne M Nielsen","doi":"10.1038/s41598-025-86150-4","DOIUrl":null,"url":null,"abstract":"<p><p>Microglia are heterogeneous macrophage cells that serve as the central nervous system's resident immune cells. During neuro-related diseases, CNS resident macrophages change their molecular, cellular, and functional properties-that collectively define \"states\"-in response to specific neural perturbations. Neurovascular diseases elicit state changes, by promoting increased vascular permeability among microvessels and thus altering blood-brain barrier integrity. Here, we used a mouse model of brain arteriovenous malformation (bAVM)-mediated by endothelial loss of Recombination signal binding protein for immunoglobulin kappa J region (Rbpj)-to investigate changes to brain resident macrophage states during neurovascular disease pathogenesis. We found increased area of Ionized calcium-binding adapter molecule 1 (Iba1) expression in Rbpj-deficient bAVM tissue, as well as Iba1 + cell hypertrophy, increased cell number, and hyperproliferation within areas of increased Iba1 + density. Hypertrophic cells had increased cell body areas and decreased process length, suggesting a transition in surveillance state. Gene expression data revealed region-specific molecular changes to Iba + cells, suggestive of altered metabolic activity. CNS resident macrophages isolated from cortical and cerebellar regions showed profiles consistent with cytokine-associated immunogenic responses and an immunovigilant pathogen-recognition response, respectively. Thus, our findings demonstrate region-specific changes to CNS resident macrophages during Rbpj-deficient bAVM.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"3932"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11785973/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-86150-4","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Microglia are heterogeneous macrophage cells that serve as the central nervous system's resident immune cells. During neuro-related diseases, CNS resident macrophages change their molecular, cellular, and functional properties-that collectively define "states"-in response to specific neural perturbations. Neurovascular diseases elicit state changes, by promoting increased vascular permeability among microvessels and thus altering blood-brain barrier integrity. Here, we used a mouse model of brain arteriovenous malformation (bAVM)-mediated by endothelial loss of Recombination signal binding protein for immunoglobulin kappa J region (Rbpj)-to investigate changes to brain resident macrophage states during neurovascular disease pathogenesis. We found increased area of Ionized calcium-binding adapter molecule 1 (Iba1) expression in Rbpj-deficient bAVM tissue, as well as Iba1 + cell hypertrophy, increased cell number, and hyperproliferation within areas of increased Iba1 + density. Hypertrophic cells had increased cell body areas and decreased process length, suggesting a transition in surveillance state. Gene expression data revealed region-specific molecular changes to Iba + cells, suggestive of altered metabolic activity. CNS resident macrophages isolated from cortical and cerebellar regions showed profiles consistent with cytokine-associated immunogenic responses and an immunovigilant pathogen-recognition response, respectively. Thus, our findings demonstrate region-specific changes to CNS resident macrophages during Rbpj-deficient bAVM.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.