Sleep deprivation accelerates Parkinson's disease via modulating gut microbiota associated microglial activation and oxidative stress.

IF 6.1 1区 生物学 Q1 MICROBIOLOGY
Wenzhong Zhu, Yuan Hu, Yongping Shi, Haijun Bao, Xukai Cheng, Mi Jiang, Zuojie Peng, Jia Song, Feifei Fang, Chenxing Jian, Wenzheng Yuan, Jinghuang Chen, Xiaogang Shu
{"title":"Sleep deprivation accelerates Parkinson's disease via modulating gut microbiota associated microglial activation and oxidative stress.","authors":"Wenzhong Zhu, Yuan Hu, Yongping Shi, Haijun Bao, Xukai Cheng, Mi Jiang, Zuojie Peng, Jia Song, Feifei Fang, Chenxing Jian, Wenzheng Yuan, Jinghuang Chen, Xiaogang Shu","doi":"10.1016/j.micres.2025.128077","DOIUrl":null,"url":null,"abstract":"<p><p>The interplay between Parkinson's disease (PD) and sleep disturbances suggests that sleep problems constitute a risk factor for PD progression, but the underlying mechanisms remain unclear. Microglial activation and oxidative stress are considered to play an important role in the pathogenesis of aging and neurodegenerative diseases. We hypothesized that sleep deprivation (SD) could exacerbate PD progression via modulating microglial activation and oxidative stress. To test this hypothesis, we established a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), then subjected the mice to SD. A battery of behavioral tests, including rotarod, pole, adhesive removal, and open field tests, were used to assess motor function. Our study showed that SD exacerbated motor deficits, loss of tyrosine hydroxylase (TH), microglial activation and oxidative stress damage in PD model mice. Fecal microbiota transplantation experiments revealed that SD mediated PD progression, microglial activation and oxidative stress via the gut microbiota. 16S rRNA sequencing analysis indicated that SD increased the abundances of bacteria such as Bacteroidaceae, while decreasing the abundances of bacteria including Lactobacillus. Non-targeted metabolomic analysis of gut microbiota-derived metabolites revealed that SD significantly increased the production of adenosine (ADO), a purine metabolite. Probiotic supplementation reversed the effects of SD on motor deficits, dopaminergic neuron loss, microglial activation and oxidative stress damage in PD mice; it also decreased SD-induced ADO production. Administration of Adenosine A2A receptor (A2AR) inhibitors, Istradefylline (Ist), attenuated the roles of SD and ADO in promoting microglial activation, oxidative stress and PD progression. Taken together, our findings indicate that SD accelerates PD progression via regulating microbiota associated microglial activation and oxidative stress, suggesting that efforts to improve sleep quality can be used to prevent and treat PD.</p>","PeriodicalId":18564,"journal":{"name":"Microbiological research","volume":"293 ","pages":"128077"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiological research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.micres.2025.128077","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The interplay between Parkinson's disease (PD) and sleep disturbances suggests that sleep problems constitute a risk factor for PD progression, but the underlying mechanisms remain unclear. Microglial activation and oxidative stress are considered to play an important role in the pathogenesis of aging and neurodegenerative diseases. We hypothesized that sleep deprivation (SD) could exacerbate PD progression via modulating microglial activation and oxidative stress. To test this hypothesis, we established a PD mouse model using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), then subjected the mice to SD. A battery of behavioral tests, including rotarod, pole, adhesive removal, and open field tests, were used to assess motor function. Our study showed that SD exacerbated motor deficits, loss of tyrosine hydroxylase (TH), microglial activation and oxidative stress damage in PD model mice. Fecal microbiota transplantation experiments revealed that SD mediated PD progression, microglial activation and oxidative stress via the gut microbiota. 16S rRNA sequencing analysis indicated that SD increased the abundances of bacteria such as Bacteroidaceae, while decreasing the abundances of bacteria including Lactobacillus. Non-targeted metabolomic analysis of gut microbiota-derived metabolites revealed that SD significantly increased the production of adenosine (ADO), a purine metabolite. Probiotic supplementation reversed the effects of SD on motor deficits, dopaminergic neuron loss, microglial activation and oxidative stress damage in PD mice; it also decreased SD-induced ADO production. Administration of Adenosine A2A receptor (A2AR) inhibitors, Istradefylline (Ist), attenuated the roles of SD and ADO in promoting microglial activation, oxidative stress and PD progression. Taken together, our findings indicate that SD accelerates PD progression via regulating microbiota associated microglial activation and oxidative stress, suggesting that efforts to improve sleep quality can be used to prevent and treat PD.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiological research
Microbiological research 生物-微生物学
CiteScore
10.90
自引率
6.00%
发文量
249
审稿时长
29 days
期刊介绍: Microbiological Research is devoted to publishing reports on prokaryotic and eukaryotic microorganisms such as yeasts, fungi, bacteria, archaea, and protozoa. Research on interactions between pathogenic microorganisms and their environment or hosts are also covered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信