Geunsoo Yook, Jiwoo Nam, Yeonseo Jo, Hyunji Yoon, Dongsoo Yang
{"title":"Metabolic engineering approaches for the biosynthesis of antibiotics.","authors":"Geunsoo Yook, Jiwoo Nam, Yeonseo Jo, Hyunji Yoon, Dongsoo Yang","doi":"10.1186/s12934-024-02628-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Antibiotics have been saving countless lives from deadly infectious diseases, which we now often take for granted. However, we are currently witnessing a significant rise in the emergence of multidrug-resistant (MDR) bacteria, making these infections increasingly difficult to treat in hospitals.</p><p><strong>Main text: </strong>The discovery and development of new antibiotic has slowed, largely due to reduced profitability, as antibiotics often lose effectiveness quickly as pathogenic bacteria evolve into MDR strains. To address this challenge, metabolic engineering has recently become crucial in developing efficient enzymes and cell factories capable of producing both existing antibiotics and a wide range of new derivatives and analogs. In this paper, we review recent tools and strategies in metabolic engineering and synthetic biology for antibiotic discovery and the efficient production of antibiotics, their derivatives, and analogs, along with representative examples.</p><p><strong>Conclusion: </strong>These metabolic engineering and synthetic biology strategies offer promising potential to revitalize the discovery and development of new antibiotics, providing renewed hope in humanity's fight against MDR pathogenic bacteria.</p>","PeriodicalId":18582,"journal":{"name":"Microbial Cell Factories","volume":"24 1","pages":"35"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786382/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbial Cell Factories","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12934-024-02628-2","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Antibiotics have been saving countless lives from deadly infectious diseases, which we now often take for granted. However, we are currently witnessing a significant rise in the emergence of multidrug-resistant (MDR) bacteria, making these infections increasingly difficult to treat in hospitals.
Main text: The discovery and development of new antibiotic has slowed, largely due to reduced profitability, as antibiotics often lose effectiveness quickly as pathogenic bacteria evolve into MDR strains. To address this challenge, metabolic engineering has recently become crucial in developing efficient enzymes and cell factories capable of producing both existing antibiotics and a wide range of new derivatives and analogs. In this paper, we review recent tools and strategies in metabolic engineering and synthetic biology for antibiotic discovery and the efficient production of antibiotics, their derivatives, and analogs, along with representative examples.
Conclusion: These metabolic engineering and synthetic biology strategies offer promising potential to revitalize the discovery and development of new antibiotics, providing renewed hope in humanity's fight against MDR pathogenic bacteria.
期刊介绍:
Microbial Cell Factories is an open access peer-reviewed journal that covers any topic related to the development, use and investigation of microbial cells as producers of recombinant proteins and natural products, or as catalyzers of biological transformations of industrial interest. Microbial Cell Factories is the world leading, primary research journal fully focusing on Applied Microbiology.
The journal is divided into the following editorial sections:
-Metabolic engineering
-Synthetic biology
-Whole-cell biocatalysis
-Microbial regulations
-Recombinant protein production/bioprocessing
-Production of natural compounds
-Systems biology of cell factories
-Microbial production processes
-Cell-free systems