Adaptive modification of antiviral defense systems in microbial community under Cr-induced stress.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Dan Huang, Jingqiu Liao, Jose Luis Balcazar, Mao Ye, Ruonan Wu, Dongsheng Wang, Pedro J J Alvarez, Pingfeng Yu
{"title":"Adaptive modification of antiviral defense systems in microbial community under Cr-induced stress.","authors":"Dan Huang, Jingqiu Liao, Jose Luis Balcazar, Mao Ye, Ruonan Wu, Dongsheng Wang, Pedro J J Alvarez, Pingfeng Yu","doi":"10.1186/s40168-025-02030-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The prokaryotic antiviral defense systems are crucial for mediating prokaryote-virus interactions that influence microbiome functioning and evolutionary dynamics. Despite the prevalence and significance of prokaryotic antiviral defense systems, their responses to abiotic stress and ecological consequences remain poorly understood in soil ecosystems. We established microcosm systems with varying concentrations of hexavalent chromium (Cr(VI)) to investigate the adaptive modifications of prokaryotic antiviral defense systems under abiotic stress.</p><p><strong>Results: </strong>Utilizing hybrid metagenomic assembly with long-read and short-read sequencing, we discovered that antiviral defense systems were more diverse and prevalent in heavily polluted soils, which was corroborated by meta-analyses of public datasets from various heavy metal-contaminated sites. As the Cr(VI) concentration increased, prokaryotes with defense systems favoring prokaryote-virus mutualism gradually supplanted those with defense systems incurring high adaptive costs. Additionally, as Cr(VI) concentrations increased, enriched antiviral defense systems exhibited synchronization with microbial heavy metal resistance genes. Furthermore, the proportion of antiviral defense systems carried by mobile genetic elements (MGEs), including plasmids and viruses, increased by approximately 43% and 39%, respectively, with rising Cr concentrations. This trend is conducive to strengthening the dissemination and sharing of defense resources within microbial communities.</p><p><strong>Conclusions: </strong>Overall, our study reveals the adaptive modification of prokaryotic antiviral defense systems in soil ecosystems under abiotic stress, as well as their positive contributions to establishing prokaryote-virus mutualism and the evolution of microbial heavy metal resistance. These findings advance our understanding of microbial adaptation in stressful environments and may inspire novel approaches for microbiome manipulation and bioremediation. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"34"},"PeriodicalIF":13.8000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786475/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02030-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The prokaryotic antiviral defense systems are crucial for mediating prokaryote-virus interactions that influence microbiome functioning and evolutionary dynamics. Despite the prevalence and significance of prokaryotic antiviral defense systems, their responses to abiotic stress and ecological consequences remain poorly understood in soil ecosystems. We established microcosm systems with varying concentrations of hexavalent chromium (Cr(VI)) to investigate the adaptive modifications of prokaryotic antiviral defense systems under abiotic stress.

Results: Utilizing hybrid metagenomic assembly with long-read and short-read sequencing, we discovered that antiviral defense systems were more diverse and prevalent in heavily polluted soils, which was corroborated by meta-analyses of public datasets from various heavy metal-contaminated sites. As the Cr(VI) concentration increased, prokaryotes with defense systems favoring prokaryote-virus mutualism gradually supplanted those with defense systems incurring high adaptive costs. Additionally, as Cr(VI) concentrations increased, enriched antiviral defense systems exhibited synchronization with microbial heavy metal resistance genes. Furthermore, the proportion of antiviral defense systems carried by mobile genetic elements (MGEs), including plasmids and viruses, increased by approximately 43% and 39%, respectively, with rising Cr concentrations. This trend is conducive to strengthening the dissemination and sharing of defense resources within microbial communities.

Conclusions: Overall, our study reveals the adaptive modification of prokaryotic antiviral defense systems in soil ecosystems under abiotic stress, as well as their positive contributions to establishing prokaryote-virus mutualism and the evolution of microbial heavy metal resistance. These findings advance our understanding of microbial adaptation in stressful environments and may inspire novel approaches for microbiome manipulation and bioremediation. Video Abstract.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信