Cyclic di AMP phosphodiesterase nanovaccine elicits protective immunity against Burkholderia cenocepacia infection in mice.

IF 6.9 1区 医学 Q1 IMMUNOLOGY
Wesam E Gawad, Yosra I Nagy, Tamer M Samir, Ahmed Mohamed Ibrahim Mansour, Omneya M Helmy
{"title":"Cyclic di AMP phosphodiesterase nanovaccine elicits protective immunity against Burkholderia cenocepacia infection in mice.","authors":"Wesam E Gawad, Yosra I Nagy, Tamer M Samir, Ahmed Mohamed Ibrahim Mansour, Omneya M Helmy","doi":"10.1038/s41541-025-01074-4","DOIUrl":null,"url":null,"abstract":"<p><p>Burkholderia cenocepacia causes life-threatening infections in immunocompromised patients. Treatment is challenging due to intrinsic antibiotic multiresistance, so vaccination provides an alternative approach. We aimed to identify vaccine candidates using reverse vaccinology and evaluate their efficacy as protein-loaded chitosan: pectin nanoparticles (C:P NPs) in a vaccine model. Applying strict subtractive channels, three proteins were shortlisted: WP_006481710.1 (LY), WP_012493605.1 (KT), and WP_006492970.1 (BD). Proteins were cloned, purified as His-tagged proteins, and loaded onto C:P NPs. Vaccinated mice had significantly higher systemic IgG and mucosal IgA antibody responses and induced IL-6 and IL-17A. 6x-His-LY-CS:P NPs and 6x-His-KT-CS:P NPs vaccines induced TNF-α. Vaccines conferred significant protection against B. cenocepacia intranasal infections. In conclusion, cyclic-di-AMP phosphodiesterase (WP_012493605.1) is a promising vaccine candidate that elicited IgG and IgA antibodies, Th1, Th2, and Th17 cellular immunity in BALB/c mice and protected against B. cenocepacia infection. This provides hope for saving lives of people at high risk of infection.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"10 1","pages":"22"},"PeriodicalIF":6.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11787396/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-025-01074-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Burkholderia cenocepacia causes life-threatening infections in immunocompromised patients. Treatment is challenging due to intrinsic antibiotic multiresistance, so vaccination provides an alternative approach. We aimed to identify vaccine candidates using reverse vaccinology and evaluate their efficacy as protein-loaded chitosan: pectin nanoparticles (C:P NPs) in a vaccine model. Applying strict subtractive channels, three proteins were shortlisted: WP_006481710.1 (LY), WP_012493605.1 (KT), and WP_006492970.1 (BD). Proteins were cloned, purified as His-tagged proteins, and loaded onto C:P NPs. Vaccinated mice had significantly higher systemic IgG and mucosal IgA antibody responses and induced IL-6 and IL-17A. 6x-His-LY-CS:P NPs and 6x-His-KT-CS:P NPs vaccines induced TNF-α. Vaccines conferred significant protection against B. cenocepacia intranasal infections. In conclusion, cyclic-di-AMP phosphodiesterase (WP_012493605.1) is a promising vaccine candidate that elicited IgG and IgA antibodies, Th1, Th2, and Th17 cellular immunity in BALB/c mice and protected against B. cenocepacia infection. This provides hope for saving lives of people at high risk of infection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NPJ Vaccines
NPJ Vaccines Immunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍: Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信