{"title":"Effects of traditional Chinese medicine Zuo-Gui-Wan on gut microbiota in an osteoporotic mouse model.","authors":"Junjie Li, HaomingYou, Yucheng Hu, Ruxu Li, Tianxin Ouyang, Qiang Ran, Guilong Zhang, Yong Huang","doi":"10.1186/s13018-025-05504-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The target and mechanism of oral traditional Chinese medicine (TCM) have been important research directions for a long time. The close relationship between osteoporosis and gut microbiota (GM) has been confirmed. However, the relevance of oral TCM and the \"Gut-Bone Axis\" is still poorly understood.</p><p><strong>Methods: </strong>Twenty-one SPF C57BL/6J female mice were divided into sham (Sham), ovariectomized (OVX), and Zuo-Gui-Wan-treated (ZGW, 1.4 g/kg) groups. The osteoporosis mouse model was established through ovariectomy. After eight weeks of Zuo-Gui-Wan treatment via gavage, serum calcium, phosphorus, ALT, AST, CREA, and other biochemical indicators were measured. Subsequently, Micro-CT, HE staining, and analysis of gut microbiota were conducted to further explore the potential mechanism.</p><p><strong>Results: </strong>The anti-osteoporotic effects of ZGW were confirmed through micro-CT, histological, and biochemical tests in an OVX-induced osteoporosis mouse model. ZGW treatment also alters the diversity and composition of the gut microbiota and altered the Firmicutes/Bacteroidetes ratio. Further analysis reveals a correlation between specific bacterial groups and serum indicators. Mfuzz clustering analysis and metagenomeSeq analysis identified important microbiota species that were rescued or modulated by ZGW treatment.</p><p><strong>Conclusion: </strong>These findings suggest that changes in gut microbiota abundance may be linked to ZGW's ability to improve osteoporosis. This study provides new insights into how ZGW treats osteoporosis, though further research is needed to clarify the mechanisms by which specific gut microbiota influence bone health.</p>","PeriodicalId":16629,"journal":{"name":"Journal of Orthopaedic Surgery and Research","volume":"20 1","pages":"128"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786422/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Orthopaedic Surgery and Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13018-025-05504-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The target and mechanism of oral traditional Chinese medicine (TCM) have been important research directions for a long time. The close relationship between osteoporosis and gut microbiota (GM) has been confirmed. However, the relevance of oral TCM and the "Gut-Bone Axis" is still poorly understood.
Methods: Twenty-one SPF C57BL/6J female mice were divided into sham (Sham), ovariectomized (OVX), and Zuo-Gui-Wan-treated (ZGW, 1.4 g/kg) groups. The osteoporosis mouse model was established through ovariectomy. After eight weeks of Zuo-Gui-Wan treatment via gavage, serum calcium, phosphorus, ALT, AST, CREA, and other biochemical indicators were measured. Subsequently, Micro-CT, HE staining, and analysis of gut microbiota were conducted to further explore the potential mechanism.
Results: The anti-osteoporotic effects of ZGW were confirmed through micro-CT, histological, and biochemical tests in an OVX-induced osteoporosis mouse model. ZGW treatment also alters the diversity and composition of the gut microbiota and altered the Firmicutes/Bacteroidetes ratio. Further analysis reveals a correlation between specific bacterial groups and serum indicators. Mfuzz clustering analysis and metagenomeSeq analysis identified important microbiota species that were rescued or modulated by ZGW treatment.
Conclusion: These findings suggest that changes in gut microbiota abundance may be linked to ZGW's ability to improve osteoporosis. This study provides new insights into how ZGW treats osteoporosis, though further research is needed to clarify the mechanisms by which specific gut microbiota influence bone health.
期刊介绍:
Journal of Orthopaedic Surgery and Research is an open access journal that encompasses all aspects of clinical and basic research studies related to musculoskeletal issues.
Orthopaedic research is conducted at clinical and basic science levels. With the advancement of new technologies and the increasing expectation and demand from doctors and patients, we are witnessing an enormous growth in clinical orthopaedic research, particularly in the fields of traumatology, spinal surgery, joint replacement, sports medicine, musculoskeletal tumour management, hand microsurgery, foot and ankle surgery, paediatric orthopaedic, and orthopaedic rehabilitation. The involvement of basic science ranges from molecular, cellular, structural and functional perspectives to tissue engineering, gait analysis, automation and robotic surgery. Implant and biomaterial designs are new disciplines that complement clinical applications.
JOSR encourages the publication of multidisciplinary research with collaboration amongst clinicians and scientists from different disciplines, which will be the trend in the coming decades.