Discovery of aurovertin B as a potent metastasis inhibitor against triple-negative breast cancer: Elucidating the complex role of the ATF3-DUSP1 axis.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Jian-Jun Shen, Xi Yang, Meng Yu, Qing-Cui Li, Ru-Yu Wang, Wen-Yan Yu, Jia-Li Zhang, Yi-Li Chen, Wen-Ting Zhu, Jia Li, Zha-Jun Zhan, Rui Wu
{"title":"Discovery of aurovertin B as a potent metastasis inhibitor against triple-negative breast cancer: Elucidating the complex role of the ATF3-DUSP1 axis.","authors":"Jian-Jun Shen, Xi Yang, Meng Yu, Qing-Cui Li, Ru-Yu Wang, Wen-Yan Yu, Jia-Li Zhang, Yi-Li Chen, Wen-Ting Zhu, Jia Li, Zha-Jun Zhan, Rui Wu","doi":"10.1124/jpet.124.002264","DOIUrl":null,"url":null,"abstract":"<p><p>Triple-negative breast cancer (TNBC) is characterized by high mortality rates, primarily due to its propensity for metastasis. Addressing this challenge necessitates the development of effective antimetastatic therapies. This study aimed to identify natural compounds with potential antimetastatic properties mainly based on the high-throughput phenotypic screening system. This system, utilizing luciferase reporter gene assays combined with scratch wound assays, evaluates compounds based on their influence on the epithelial-mesenchymal transition (EMT) marker E-cadherin. Through this approach, aurovertin B (AVB) was revealed to have significant antimetastatic capability. Notably, AVB exhibited substantial metastasis suppression in many TNBC cell lines, including MDA-MB-231, HCC1937, and 4T1. Also, its remarkable antimetastatic activity was demonstrated in vivo via the orthotopic breast cancer mouse model. Further exploration revealed a pronounced association between AVB-induced upregulation of dual-specificity phosphatase 1 (DUSP1) and its inhibitory effect on TNBC metastasis. Additionally, microarray analysis conducted to elucidate the underlying mechanism of the AVB-DUSP1 interaction identified activating transcription factor 3 (ATF3) as a critical transcription factor instrumental in DUSP1 transcriptional activation. This discovery, coupled with observations of enhanced ATF3-DUSP1 expression and consequent reduction in TNBC metastatic foci in response to AVB, provides novel insights into the metastatic mechanisms of TNBC. SIGNIFICANCE STATEMENT: This study constructs a high-throughput phenotypic screening system utilizing epithelial-mesenchymal transition marker E-cadherin promoter luciferase reporter gene combined with scratch wound assays. Aurovertin B was revealed to possess significant antimetastatic activity through this approach, which was further demonstrated via in vivo and in vitro experiments. The discovery of the regulatory role of the ATF3-DUSP1 pathway enriches our understanding of TNBC metastasis mechanism and suggests the potential of ATF3 and DUSP1 as biomarkers for diagnosing TNBC metastasis.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 1","pages":"100005"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002264","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Triple-negative breast cancer (TNBC) is characterized by high mortality rates, primarily due to its propensity for metastasis. Addressing this challenge necessitates the development of effective antimetastatic therapies. This study aimed to identify natural compounds with potential antimetastatic properties mainly based on the high-throughput phenotypic screening system. This system, utilizing luciferase reporter gene assays combined with scratch wound assays, evaluates compounds based on their influence on the epithelial-mesenchymal transition (EMT) marker E-cadherin. Through this approach, aurovertin B (AVB) was revealed to have significant antimetastatic capability. Notably, AVB exhibited substantial metastasis suppression in many TNBC cell lines, including MDA-MB-231, HCC1937, and 4T1. Also, its remarkable antimetastatic activity was demonstrated in vivo via the orthotopic breast cancer mouse model. Further exploration revealed a pronounced association between AVB-induced upregulation of dual-specificity phosphatase 1 (DUSP1) and its inhibitory effect on TNBC metastasis. Additionally, microarray analysis conducted to elucidate the underlying mechanism of the AVB-DUSP1 interaction identified activating transcription factor 3 (ATF3) as a critical transcription factor instrumental in DUSP1 transcriptional activation. This discovery, coupled with observations of enhanced ATF3-DUSP1 expression and consequent reduction in TNBC metastatic foci in response to AVB, provides novel insights into the metastatic mechanisms of TNBC. SIGNIFICANCE STATEMENT: This study constructs a high-throughput phenotypic screening system utilizing epithelial-mesenchymal transition marker E-cadherin promoter luciferase reporter gene combined with scratch wound assays. Aurovertin B was revealed to possess significant antimetastatic activity through this approach, which was further demonstrated via in vivo and in vitro experiments. The discovery of the regulatory role of the ATF3-DUSP1 pathway enriches our understanding of TNBC metastasis mechanism and suggests the potential of ATF3 and DUSP1 as biomarkers for diagnosing TNBC metastasis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信