Metformin in overcoming enzalutamide resistance in castration-resistant prostate cancer.

IF 3.1 3区 医学 Q2 PHARMACOLOGY & PHARMACY
Kendall Simpson, Derek B Allison, Daheng He, Jinpeng Liu, Chi Wang, Xiaoqi Liu
{"title":"Metformin in overcoming enzalutamide resistance in castration-resistant prostate cancer.","authors":"Kendall Simpson, Derek B Allison, Daheng He, Jinpeng Liu, Chi Wang, Xiaoqi Liu","doi":"10.1124/jpet.124.002424","DOIUrl":null,"url":null,"abstract":"<p><p>Androgen deprivation is the standard treatment for patients with prostate cancer. However, the disease eventually progresses as castration-resistant prostate cancer (CRPC). Enzalutamide, an androgen receptor inhibitor, is a typical drug for treating CRPC and with continuous reliance on the drug, can lead to enzalutamide resistance. This highlights the necessity for developing novel therapeutic targets to combat the gain of resistance. Metformin has been recently investigated for its potential antitumorigenic effects in many cancer types. In this study, we used enzalutamide and metformin in combination to explore the possible rescued efficacy of enzalutamide in the treatment of enzalutamide-resistant CRPC. We first tested the effects of this combination treatment on cell viability, drug synergy, and cell proliferation in enzalutamide-resistant CRPC cell lines. After combination treatment, we observed a decrease in cell proliferation and viability as well as a synergistic effect of both enzalutamide and metformin in vitro. Following these results, we sought to explore how combination treatment affected mitochondrial fitness using mitochondrial stress test analysis and mitochondrial membrane potential shifts due to metformin's action in inhibiting complex I of oxidative phosphorylation. We employed 2 different strategies for in vivo testing using 22Rv1 and LuCaP35CR xenograft models. Finally, RNA sequencing revealed a potential link in the downregulation of rat sarcoma-mitogen-activated protein kinase signaling following combination treatment. SIGNIFICANCE STATEMENT: Increasing evidence suggests that oxidative phosphorylation might play a critical role in the development of resistance to cancer therapy. This study showed that targeting oxidative phosphorylation with metformin can enhance the efficacy of enzalutamide in castration-resistant prostate cancer in vitro.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":"392 1","pages":"100034"},"PeriodicalIF":3.1000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.124.002424","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Androgen deprivation is the standard treatment for patients with prostate cancer. However, the disease eventually progresses as castration-resistant prostate cancer (CRPC). Enzalutamide, an androgen receptor inhibitor, is a typical drug for treating CRPC and with continuous reliance on the drug, can lead to enzalutamide resistance. This highlights the necessity for developing novel therapeutic targets to combat the gain of resistance. Metformin has been recently investigated for its potential antitumorigenic effects in many cancer types. In this study, we used enzalutamide and metformin in combination to explore the possible rescued efficacy of enzalutamide in the treatment of enzalutamide-resistant CRPC. We first tested the effects of this combination treatment on cell viability, drug synergy, and cell proliferation in enzalutamide-resistant CRPC cell lines. After combination treatment, we observed a decrease in cell proliferation and viability as well as a synergistic effect of both enzalutamide and metformin in vitro. Following these results, we sought to explore how combination treatment affected mitochondrial fitness using mitochondrial stress test analysis and mitochondrial membrane potential shifts due to metformin's action in inhibiting complex I of oxidative phosphorylation. We employed 2 different strategies for in vivo testing using 22Rv1 and LuCaP35CR xenograft models. Finally, RNA sequencing revealed a potential link in the downregulation of rat sarcoma-mitogen-activated protein kinase signaling following combination treatment. SIGNIFICANCE STATEMENT: Increasing evidence suggests that oxidative phosphorylation might play a critical role in the development of resistance to cancer therapy. This study showed that targeting oxidative phosphorylation with metformin can enhance the efficacy of enzalutamide in castration-resistant prostate cancer in vitro.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.90
自引率
0.00%
发文量
115
审稿时长
1 months
期刊介绍: A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信