Curcumin-laden hydrogel coating medical device for periprosthetic joint infection prevention and control

IF 5.3 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Nina Burduja , Nicola F. Virzì , Giuseppe Nocito , Giovanna Ginestra , Maria G. Saita , Fabiola Spitaleri , Salvatore Patanè , Antonia Nostro , Valeria Pittalà , Antonino Mazzaglia
{"title":"Curcumin-laden hydrogel coating medical device for periprosthetic joint infection prevention and control","authors":"Nina Burduja ,&nbsp;Nicola F. Virzì ,&nbsp;Giuseppe Nocito ,&nbsp;Giovanna Ginestra ,&nbsp;Maria G. Saita ,&nbsp;Fabiola Spitaleri ,&nbsp;Salvatore Patanè ,&nbsp;Antonia Nostro ,&nbsp;Valeria Pittalà ,&nbsp;Antonino Mazzaglia","doi":"10.1016/j.ijpharm.2025.125283","DOIUrl":null,"url":null,"abstract":"<div><div>The Periprosthetic Joint Infection (PJI) is one of the most important complications of the joint arthroplasty. This surgical procedure is rising worldwide and is further affecting the public health because of the widespread resistance to antibiotics. New therapeutic strategies and innovative antimicrobial biomaterials development are needed to eradicate pathogens without inducing resistance and accelerating recovery. In this direction, herein Curcumin I- (Cur-) loaded DAC® (Defensive Antibacterial Coating, a hydrogel based on hyaluronic acid conjugated to polylactic acid, hereafter named DAC) has been built on. To incorporate Cur in the DAC, thus obtaining Cur-DAC (Cur ≅ 0.93 mg/g), the generally recognized as safe (GRAS) propylene glycol (PG) was used as cosolvent. The drugs combinations of Cur (≅ 0.93 mg/g) and Vancomycin (Van) (at low dose that is ≅ 0.033 mg/g) within the hydrogel (Cur/Van-DAC) was alsoexperienced . Hydrogels were prepared and characterized by rheological investigations and their erosion together with the drug release profile over the time evaluated in physiological conditions. The nanohydrogels produced upon water dilution were characterized by AFM, DLS, and UV/Vis absorption and emission spectroscopies. Superior Cur stability over pH-, solvent- and photoinduced degradations resulted in the DAC matrix. The photoinduced antimicrobial activity of Cur-DAC against methicillin-resistant <em>Staphylococcus aureus</em> (MRSA) and vancomycin-resistant <em>Enterococcus faecium</em> was evaluated by spreading loaded DAC-based hydrogel onto titanium disk mimicking prosthesis, thus detecting a good reduction of bacterial load after 30 min of exposure to light and a subsequent decrease of cells number at 24 h in the absence of nutrients. The drug association in Cur/Van-DAC demonstrated the best activity against MRSA, even in the presence of nutrients, with respect to established DAC loaded with high amounts of Van (ranging from 18.7 mg/g to 45.8 mg/g) used during the surgery, due to the photoantibacterial activity of Cur, becoming promising to prevent and control joint infections.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"672 ","pages":"Article 125283"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S037851732500119X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

The Periprosthetic Joint Infection (PJI) is one of the most important complications of the joint arthroplasty. This surgical procedure is rising worldwide and is further affecting the public health because of the widespread resistance to antibiotics. New therapeutic strategies and innovative antimicrobial biomaterials development are needed to eradicate pathogens without inducing resistance and accelerating recovery. In this direction, herein Curcumin I- (Cur-) loaded DAC® (Defensive Antibacterial Coating, a hydrogel based on hyaluronic acid conjugated to polylactic acid, hereafter named DAC) has been built on. To incorporate Cur in the DAC, thus obtaining Cur-DAC (Cur ≅ 0.93 mg/g), the generally recognized as safe (GRAS) propylene glycol (PG) was used as cosolvent. The drugs combinations of Cur (≅ 0.93 mg/g) and Vancomycin (Van) (at low dose that is ≅ 0.033 mg/g) within the hydrogel (Cur/Van-DAC) was alsoexperienced . Hydrogels were prepared and characterized by rheological investigations and their erosion together with the drug release profile over the time evaluated in physiological conditions. The nanohydrogels produced upon water dilution were characterized by AFM, DLS, and UV/Vis absorption and emission spectroscopies. Superior Cur stability over pH-, solvent- and photoinduced degradations resulted in the DAC matrix. The photoinduced antimicrobial activity of Cur-DAC against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium was evaluated by spreading loaded DAC-based hydrogel onto titanium disk mimicking prosthesis, thus detecting a good reduction of bacterial load after 30 min of exposure to light and a subsequent decrease of cells number at 24 h in the absence of nutrients. The drug association in Cur/Van-DAC demonstrated the best activity against MRSA, even in the presence of nutrients, with respect to established DAC loaded with high amounts of Van (ranging from 18.7 mg/g to 45.8 mg/g) used during the surgery, due to the photoantibacterial activity of Cur, becoming promising to prevent and control joint infections.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
8.60%
发文量
951
审稿时长
72 days
期刊介绍: The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信