Forecasting interannual abundance of Helicoverpa zea (Lepidoptera: Noctuidae).

IF 1.8 3区 农林科学 Q2 ENTOMOLOGY
Samuel T Wallace, Natalie G Nelson, Dominic D Reisig, Anders S Huseth
{"title":"Forecasting interannual abundance of Helicoverpa zea (Lepidoptera: Noctuidae).","authors":"Samuel T Wallace, Natalie G Nelson, Dominic D Reisig, Anders S Huseth","doi":"10.1093/ee/nvaf011","DOIUrl":null,"url":null,"abstract":"<p><p>Corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), is a common herbivore that causes economic damage to agronomic and specialty crops across North America. The interannual abundance of H. zea is closely linked to climactic variables that influence overwintering survival, as well as within-season host plant availability that drives generational population increases. Although the abiotic and biotic drivers of H. zea populations have been well documented, prior temporal H. zea modeling studies have largely focused on mechanistic/simulation approaches, long term distribution characterization, or degree day-based phenology within the growing season. While these modeling approaches provide insight into H. zea population ecology, growers remain interested in approaches that forecast the interannual magnitude of moth flights which is a key knowledge gap limiting early warning before crops are planted. Our study used trap data from 48 site-by-year combinations distributed across North Carolina between 2008 and 2021 to forecast H. zea abundance in advance of the growing season. To do this, meteorological data from weather stations were combined with crop and soil data to create predictor variables for a random forest H. zea forecasting model. Overall model performance was strong (R2 = 0.92, RMSE = 350) and demonstrates a first step toward development of contemporary model-based forecasting tools that enable proactive approaches in support of integrated pest management plans. Similar methods could be applied at a larger spatial extent by leveraging national gridded climate and crop data paired with trap counts to expand forecasting models throughout the H. zea overwintering range.</p>","PeriodicalId":11751,"journal":{"name":"Environmental Entomology","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Entomology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/ee/nvaf011","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Corn earworm, Helicoverpa zea Boddie (Lepidoptera: Noctuidae), is a common herbivore that causes economic damage to agronomic and specialty crops across North America. The interannual abundance of H. zea is closely linked to climactic variables that influence overwintering survival, as well as within-season host plant availability that drives generational population increases. Although the abiotic and biotic drivers of H. zea populations have been well documented, prior temporal H. zea modeling studies have largely focused on mechanistic/simulation approaches, long term distribution characterization, or degree day-based phenology within the growing season. While these modeling approaches provide insight into H. zea population ecology, growers remain interested in approaches that forecast the interannual magnitude of moth flights which is a key knowledge gap limiting early warning before crops are planted. Our study used trap data from 48 site-by-year combinations distributed across North Carolina between 2008 and 2021 to forecast H. zea abundance in advance of the growing season. To do this, meteorological data from weather stations were combined with crop and soil data to create predictor variables for a random forest H. zea forecasting model. Overall model performance was strong (R2 = 0.92, RMSE = 350) and demonstrates a first step toward development of contemporary model-based forecasting tools that enable proactive approaches in support of integrated pest management plans. Similar methods could be applied at a larger spatial extent by leveraging national gridded climate and crop data paired with trap counts to expand forecasting models throughout the H. zea overwintering range.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Entomology
Environmental Entomology 生物-昆虫学
CiteScore
3.90
自引率
5.90%
发文量
97
审稿时长
3-8 weeks
期刊介绍: Environmental Entomology is published bimonthly in February, April, June, August, October, and December. The journal publishes reports on the interaction of insects with the biological, chemical, and physical aspects of their environment. In addition to research papers, Environmental Entomology publishes Reviews, interpretive articles in a Forum section, and Letters to the Editor.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信