Targeted nanoliposomes for precision rheumatoid arthritis therapy: a review on mechanisms and in vivo potential.

IF 6.5 2区 医学 Q1 PHARMACOLOGY & PHARMACY
Drug Delivery Pub Date : 2025-12-01 Epub Date: 2025-02-01 DOI:10.1080/10717544.2025.2459772
Rushikesh Girase, Nayan A Gujarathi, Amey Sukhia, Sri Sai Nikitha Kota, Tulshidas S Patil, Abhijeet A Aher, Yogeeta O Agrawal, Shreesh Ojha, Charu Sharma, Sameer N Goyal
{"title":"Targeted nanoliposomes for precision rheumatoid arthritis therapy: a review on mechanisms and <i>in vivo</i> potential.","authors":"Rushikesh Girase, Nayan A Gujarathi, Amey Sukhia, Sri Sai Nikitha Kota, Tulshidas S Patil, Abhijeet A Aher, Yogeeta O Agrawal, Shreesh Ojha, Charu Sharma, Sameer N Goyal","doi":"10.1080/10717544.2025.2459772","DOIUrl":null,"url":null,"abstract":"<p><p>Rheumatoid arthritis (RA) is an inflammatory immune-triggered disease that causes synovitis, cartilage degradation, and joint injury. In nanotechnology, conventional liposomes were extensively investigated for RA. However, they frequently undergo rapid clearance, reducing circulation time and therapeutic efficacy. Additionally, their stability in the bloodstream is often compromised, resulting in premature drug release. The current review explores the potential of targeted liposomal-based nanosystems in the treatment of RA. It highlights the pathophysiology of RA, explores selective targeting sites, and elucidates diverse mechanisms of novel liposomal types and their applications. Furthermore, the targeting strategies of pH-sensitive, flexible, surface-modified, PEGylated, acoustic, ROS-mediated, and biofunctionalized liposomes are addressed. Targeted nanoliposomes showed potential in precisely delivering drugs to CD44, SR-A, FR-β, FLS, and toll-like receptors through the high affinity of ligands. <i>In vitro</i> studies interpreted stable release profiles and improved stability. <i>Ex vivo</i> studies on skin demonstrated that ultradeformable and glycerol-conjugated liposomes enhanced drug penetrability. <i>In vivo</i> experiments for liposomal types in the arthritis rat model depicted remarkable efficacy in reducing joint swelling, pro-inflammatory cytokines, and synovial hyperplasia. In conclusion, these targeted liposomes represented a significant leap forward in drug delivery, offering effective therapeutic options for RA. In the future, integrating these advanced liposomes with artificial intelligence, immunotherapy, and precision medicine holds great promise.</p>","PeriodicalId":11679,"journal":{"name":"Drug Delivery","volume":"32 1","pages":"2459772"},"PeriodicalIF":6.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11789225/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Delivery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10717544.2025.2459772","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Rheumatoid arthritis (RA) is an inflammatory immune-triggered disease that causes synovitis, cartilage degradation, and joint injury. In nanotechnology, conventional liposomes were extensively investigated for RA. However, they frequently undergo rapid clearance, reducing circulation time and therapeutic efficacy. Additionally, their stability in the bloodstream is often compromised, resulting in premature drug release. The current review explores the potential of targeted liposomal-based nanosystems in the treatment of RA. It highlights the pathophysiology of RA, explores selective targeting sites, and elucidates diverse mechanisms of novel liposomal types and their applications. Furthermore, the targeting strategies of pH-sensitive, flexible, surface-modified, PEGylated, acoustic, ROS-mediated, and biofunctionalized liposomes are addressed. Targeted nanoliposomes showed potential in precisely delivering drugs to CD44, SR-A, FR-β, FLS, and toll-like receptors through the high affinity of ligands. In vitro studies interpreted stable release profiles and improved stability. Ex vivo studies on skin demonstrated that ultradeformable and glycerol-conjugated liposomes enhanced drug penetrability. In vivo experiments for liposomal types in the arthritis rat model depicted remarkable efficacy in reducing joint swelling, pro-inflammatory cytokines, and synovial hyperplasia. In conclusion, these targeted liposomes represented a significant leap forward in drug delivery, offering effective therapeutic options for RA. In the future, integrating these advanced liposomes with artificial intelligence, immunotherapy, and precision medicine holds great promise.

靶向纳米脂质体用于精确治疗类风湿性关节炎:机制和体内潜力的综述。
类风湿性关节炎(RA)是一种炎症性免疫触发疾病,可引起滑膜炎、软骨退化和关节损伤。在纳米技术中,常规脂质体被广泛研究用于类风湿性关节炎。然而,它们往往经过快速清除,减少循环时间和治疗效果。此外,它们在血液中的稳定性经常受到损害,导致药物过早释放。目前的综述探讨了靶向脂质体纳米系统在治疗类风湿性关节炎中的潜力。它强调了RA的病理生理,探索了选择性靶向位点,并阐明了新型脂质体类型的多种机制及其应用。此外,还讨论了ph敏感、柔性、表面修饰、聚乙二醇化、声学、ros介导和生物功能化脂质体的靶向策略。靶向纳米脂质体显示出通过配体的高亲和力将药物精确递送到CD44、SR-A、FR-β、FLS和toll样受体的潜力。体外研究解释了稳定的释放曲线和提高的稳定性。皮肤的体外研究表明,超成形脂质体和甘油偶联脂质体增强了药物的渗透性。在关节炎大鼠模型的体内实验中,脂质体类型显示了显著的减轻关节肿胀,促炎细胞因子和滑膜增生的功效。总之,这些靶向脂质体代表了药物传递的重大飞跃,为RA提供了有效的治疗选择。未来,将这些先进的脂质体与人工智能、免疫疗法和精准医疗相结合,前景广阔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Drug Delivery
Drug Delivery 医学-药学
CiteScore
11.80
自引率
5.00%
发文量
250
审稿时长
3.3 months
期刊介绍: Drug Delivery is an open access journal serving the academic and industrial communities with peer reviewed coverage of basic research, development, and application principles of drug delivery and targeting at molecular, cellular, and higher levels. Topics covered include all delivery systems including oral, pulmonary, nasal, parenteral and transdermal, and modes of entry such as controlled release systems; microcapsules, liposomes, vesicles, and macromolecular conjugates; antibody targeting; protein/peptide delivery; DNA, oligonucleotide and siRNA delivery. Papers on drug dosage forms and their optimization will not be considered unless they directly relate to the original drug delivery issues. Published articles present original research and critical reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信