Functional Connectivity of the Scene Processing Network at Rest Does Not Reliably Predict Human Behavior on Scene Processing Tasks.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-02-12 Print Date: 2025-02-01 DOI:10.1523/ENEURO.0375-24.2024
David M Watson, Timothy J Andrews
{"title":"Functional Connectivity of the Scene Processing Network at Rest Does Not Reliably Predict Human Behavior on Scene Processing Tasks.","authors":"David M Watson, Timothy J Andrews","doi":"10.1523/ENEURO.0375-24.2024","DOIUrl":null,"url":null,"abstract":"<p><p>The perception of scenes is associated with processing in a network of scene-selective regions in the human brain. Prior research has identified a posterior-anterior bias within this network. Posterior scene regions exhibit preferential connectivity with early visual and posterior parietal regions, indicating a role in representing egocentric visual features. In contrast, anterior scene regions demonstrate stronger connectivity with frontoparietal control and default mode networks, suggesting a role in mnemonic processing of locations. Despite these findings, evidence linking connectivity in these regions to cognitive scene processing remains limited. In this preregistered study, we obtained cognitive behavioral measures alongside resting-state fMRI data from a large-scale public dataset to investigate interindividual variation in scene processing abilities relative to the functional connectivity of the scene network. Our results revealed substantial individual differences in scene recognition, spatial memory, and navigational abilities. Resting-state functional connectivity reproduced the posterior-anterior bias within the scene network. However, contrary to our preregistered hypothesis, we did not observe any consistent associations between interindividual variation in this connectivity and behavioral performance. These findings highlight the need for further research to clarify the role of these connections in scene processing, potentially through assessments of functional connectivity during scene-relevant tasks or in naturalistic conditions.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11820959/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0375-24.2024","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The perception of scenes is associated with processing in a network of scene-selective regions in the human brain. Prior research has identified a posterior-anterior bias within this network. Posterior scene regions exhibit preferential connectivity with early visual and posterior parietal regions, indicating a role in representing egocentric visual features. In contrast, anterior scene regions demonstrate stronger connectivity with frontoparietal control and default mode networks, suggesting a role in mnemonic processing of locations. Despite these findings, evidence linking connectivity in these regions to cognitive scene processing remains limited. In this preregistered study, we obtained cognitive behavioral measures alongside resting-state fMRI data from a large-scale public dataset to investigate interindividual variation in scene processing abilities relative to the functional connectivity of the scene network. Our results revealed substantial individual differences in scene recognition, spatial memory, and navigational abilities. Resting-state functional connectivity reproduced the posterior-anterior bias within the scene network. However, contrary to our preregistered hypothesis, we did not observe any consistent associations between interindividual variation in this connectivity and behavioral performance. These findings highlight the need for further research to clarify the role of these connections in scene processing, potentially through assessments of functional connectivity during scene-relevant tasks or in naturalistic conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信