Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy.

IF 9.3 2区 医学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Win Lwin Thuya, Yang Cao, Paul Chi-Lui Ho, Andrea Li-Ann Wong, Lingzhi Wang, Jianbiao Zhou, Christophe Nicot, Boon Cher Goh
{"title":"Insights into IL-6/JAK/STAT3 signaling in the tumor microenvironment: Implications for cancer therapy.","authors":"Win Lwin Thuya, Yang Cao, Paul Chi-Lui Ho, Andrea Li-Ann Wong, Lingzhi Wang, Jianbiao Zhou, Christophe Nicot, Boon Cher Goh","doi":"10.1016/j.cytogfr.2025.01.003","DOIUrl":null,"url":null,"abstract":"<p><p>The IL-6/JAK/STAT3 signaling pathway is a key regulator of tumor progression, immune evasion, and therapy resistance in various cancers. Frequently dysregulated in malignancies, this pathway drives cancer cell growth, survival, angiogenesis, and metastasis by altering the tumor microenvironment (TME). IL-6 activates JAK kinases and STAT3 through its receptor complex, leading to the transcription of oncogenic genes and fostering an immunosuppressive TME. This environment recruits tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs), collectively supporting immune evasion and tumor growth. IL-6/JAK/STAT3 axis also contributes to metabolic reprogramming, such as enhanced glycolysis and glutathione metabolism, helping cancer cells adapt to environmental stresses. Therapeutic targeting of this pathway has gained significant interest. Strategies include monoclonal antibodies against IL-6 or its receptor (e.g., Tocilizumab, Siltuximab), JAK inhibitors (e.g., Ruxolitinib), and STAT3-specific inhibitors (e.g., Napabucasin), which have exhibited promise in preclinical and initial clinical studies. These inhibitors can suppress tumor growth, reverse immune suppression, and enhance the efficacy of immunotherapies like immune checkpoint inhibitors. Combination therapies that integrate IL-6 pathway inhibitors with conventional treatments are particularly promising, addressing resistance mechanisms and improving patient outcomes. Advances in biomarker-driven patient selection, RNA-based therapies, and isoform-specific inhibitors pave the way for more precise interventions. This review delves into the diverse roles of IL-6/JAK/STAT3 signaling in cancer progression, therapeutic strategies targeting this pathway, and the potential for integrating these approaches into personalized medicine to enhance treatment outcomes.</p>","PeriodicalId":11132,"journal":{"name":"Cytokine & Growth Factor Reviews","volume":" ","pages":""},"PeriodicalIF":9.3000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cytokine & Growth Factor Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.cytogfr.2025.01.003","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The IL-6/JAK/STAT3 signaling pathway is a key regulator of tumor progression, immune evasion, and therapy resistance in various cancers. Frequently dysregulated in malignancies, this pathway drives cancer cell growth, survival, angiogenesis, and metastasis by altering the tumor microenvironment (TME). IL-6 activates JAK kinases and STAT3 through its receptor complex, leading to the transcription of oncogenic genes and fostering an immunosuppressive TME. This environment recruits tumor-associated macrophages (TAMs), cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs), collectively supporting immune evasion and tumor growth. IL-6/JAK/STAT3 axis also contributes to metabolic reprogramming, such as enhanced glycolysis and glutathione metabolism, helping cancer cells adapt to environmental stresses. Therapeutic targeting of this pathway has gained significant interest. Strategies include monoclonal antibodies against IL-6 or its receptor (e.g., Tocilizumab, Siltuximab), JAK inhibitors (e.g., Ruxolitinib), and STAT3-specific inhibitors (e.g., Napabucasin), which have exhibited promise in preclinical and initial clinical studies. These inhibitors can suppress tumor growth, reverse immune suppression, and enhance the efficacy of immunotherapies like immune checkpoint inhibitors. Combination therapies that integrate IL-6 pathway inhibitors with conventional treatments are particularly promising, addressing resistance mechanisms and improving patient outcomes. Advances in biomarker-driven patient selection, RNA-based therapies, and isoform-specific inhibitors pave the way for more precise interventions. This review delves into the diverse roles of IL-6/JAK/STAT3 signaling in cancer progression, therapeutic strategies targeting this pathway, and the potential for integrating these approaches into personalized medicine to enhance treatment outcomes.

肿瘤微环境中IL-6/JAK/STAT3信号通路的研究:对癌症治疗的意义
IL-6/JAK/STAT3信号通路是多种癌症中肿瘤进展、免疫逃避和治疗耐药的关键调控因子。该通路在恶性肿瘤中经常失调,通过改变肿瘤微环境(TME)驱动癌细胞生长、存活、血管生成和转移。IL-6通过其受体复合物激活JAK激酶和STAT3,导致致癌基因的转录,并促进免疫抑制TME。这种环境招募肿瘤相关巨噬细胞(tam)、癌症相关成纤维细胞(CAFs)和调节性T细胞(Tregs),共同支持免疫逃避和肿瘤生长。IL-6/JAK/STAT3轴也有助于代谢重编程,如糖酵解和谷胱甘肽代谢增强,帮助癌细胞适应环境应激。这一途径的治疗靶向性已经引起了极大的兴趣。策略包括针对IL-6或其受体的单克隆抗体(例如,Tocilizumab, Siltuximab), JAK抑制剂(例如,Ruxolitinib)和stat3特异性抑制剂(例如,Napabucasin),这些抑制剂在临床前和初步临床研究中显示出前景。这些抑制剂可以抑制肿瘤生长,逆转免疫抑制,提高免疫检查点抑制剂等免疫疗法的疗效。将IL-6途径抑制剂与常规治疗相结合的联合疗法尤其有希望解决耐药机制并改善患者预后。生物标志物驱动的患者选择、基于rna的治疗和亚型特异性抑制剂的进展为更精确的干预铺平了道路。这篇综述深入探讨了IL-6/JAK/STAT3信号在癌症进展中的不同作用,针对这一途径的治疗策略,以及将这些方法整合到个性化医疗中以提高治疗效果的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cytokine & Growth Factor Reviews
Cytokine & Growth Factor Reviews 生物-生化与分子生物学
CiteScore
21.10
自引率
1.50%
发文量
61
审稿时长
22 days
期刊介绍: Cytokine & Growth Factor Reviews is a leading publication that focuses on the dynamic fields of growth factor and cytokine research. Our journal offers a platform for authors to disseminate thought-provoking articles such as critical reviews, state-of-the-art reviews, letters to the editor, and meeting reviews. We aim to cover important breakthroughs in these rapidly evolving areas, providing valuable insights into the multidisciplinary significance of cytokines and growth factors. Our journal spans various domains including signal transduction, cell growth and differentiation, embryonic development, immunology, tumorigenesis, and clinical medicine. By publishing cutting-edge research and analysis, we aim to influence the way researchers and experts perceive and understand growth factors and cytokines. We encourage novel expressions of ideas and innovative approaches to organizing content, fostering a stimulating environment for knowledge exchange and scientific advancement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信