Binding of Selected Ligands to Human Protein Disulfide Isomerase and Microsomal Triglyceride Transfer Protein Complex and the Associated Conformational Changes: A Computational Molecular Modelling Study.
{"title":"Binding of Selected Ligands to Human Protein Disulfide Isomerase and Microsomal Triglyceride Transfer Protein Complex and the Associated Conformational Changes: A Computational Molecular Modelling Study.","authors":"Yong Xiao Yang, Peng Li, Bao Ting Zhu","doi":"10.1002/open.202400034","DOIUrl":null,"url":null,"abstract":"<p><p>Human protein disulfide isomerase (PDI) is a multifunctional protein, and also serves as the β subunit of the human microsomal triglyceride transfer protein (MTP) complex, a lipid transfer machinery. Dysfunction of the MTP complex is associated with certain disease conditions such as abetalipoproteinemia and cardiovascular diseases. It is known that the functions of PDI or the MTP complex can be regulated by the binding of a small-molecule ligand to either of these two proteins. In the present study, the conformational changes of the MTP complex upon the binding of three selected small-molecule ligands (17β-estradiol, lomitapide and a phospholipid) are investigated based on the available biochemical and structural information by using the protein-ligand docking method and molecular dynamics (MD) simulation. The ligand-binding sites, the binding poses and binding strengths, the key binding site residues, and the ligand binding-induced conformational changes in the MTP complex are analyzed based on the MD trajectories. The open-to-closed or closed-to-open transitions of PDI is found to occur in both reduced and oxidized states of PDI and also independent of the presence or absence of small-molecule ligands. It is predicted that lomitapide and 1,2-diacyl-sn-glycero-3-phosphocholine (a phospholipid) can bind inside the lipid-binding pocket in the MTP complex with high affinities, whereas 17β-estradiol interacts with the lipid-binding pocket in addition to its binding to the interface region of the MTP complex. Additionally, lomitapide can bind to the b' domain of PDI as reported earlier for E<sub>2</sub>. Key residues for the ligand-binding interactions are identified in this study. It will be of interest to further explore whether the binding of small molecules can facilitate the conformational transitions of PDI in the future. The molecular and structural insights gained from the present work are of value for understanding some of the important biological functions of PDI and the MTP complex.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400034"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistryOpen","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/open.202400034","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Human protein disulfide isomerase (PDI) is a multifunctional protein, and also serves as the β subunit of the human microsomal triglyceride transfer protein (MTP) complex, a lipid transfer machinery. Dysfunction of the MTP complex is associated with certain disease conditions such as abetalipoproteinemia and cardiovascular diseases. It is known that the functions of PDI or the MTP complex can be regulated by the binding of a small-molecule ligand to either of these two proteins. In the present study, the conformational changes of the MTP complex upon the binding of three selected small-molecule ligands (17β-estradiol, lomitapide and a phospholipid) are investigated based on the available biochemical and structural information by using the protein-ligand docking method and molecular dynamics (MD) simulation. The ligand-binding sites, the binding poses and binding strengths, the key binding site residues, and the ligand binding-induced conformational changes in the MTP complex are analyzed based on the MD trajectories. The open-to-closed or closed-to-open transitions of PDI is found to occur in both reduced and oxidized states of PDI and also independent of the presence or absence of small-molecule ligands. It is predicted that lomitapide and 1,2-diacyl-sn-glycero-3-phosphocholine (a phospholipid) can bind inside the lipid-binding pocket in the MTP complex with high affinities, whereas 17β-estradiol interacts with the lipid-binding pocket in addition to its binding to the interface region of the MTP complex. Additionally, lomitapide can bind to the b' domain of PDI as reported earlier for E2. Key residues for the ligand-binding interactions are identified in this study. It will be of interest to further explore whether the binding of small molecules can facilitate the conformational transitions of PDI in the future. The molecular and structural insights gained from the present work are of value for understanding some of the important biological functions of PDI and the MTP complex.
期刊介绍:
ChemistryOpen is a multidisciplinary, gold-road open-access, international forum for the publication of outstanding Reviews, Full Papers, and Communications from all areas of chemistry and related fields. It is co-owned by 16 continental European Chemical Societies, who have banded together in the alliance called ChemPubSoc Europe for the purpose of publishing high-quality journals in the field of chemistry and its border disciplines. As some of the governments of the countries represented in ChemPubSoc Europe have strongly recommended that the research conducted with their funding is freely accessible for all readers (Open Access), ChemPubSoc Europe was concerned that no journal for which the ethical standards were monitored by a chemical society was available for such papers. ChemistryOpen fills this gap.