Ali Atshan Abdulredah, Mohammed A Fadhel, Laith Alzubaidi, Ye Duan, Monji Kherallah, Faiza Charfi
{"title":"Towards unbiased skin cancer classification using deep feature fusion.","authors":"Ali Atshan Abdulredah, Mohammed A Fadhel, Laith Alzubaidi, Ye Duan, Monji Kherallah, Faiza Charfi","doi":"10.1186/s12911-025-02889-w","DOIUrl":null,"url":null,"abstract":"<p><p>This paper introduces SkinWiseNet (SWNet), a deep convolutional neural network designed for the detection and automatic classification of potentially malignant skin cancer conditions. SWNet optimizes feature extraction through multiple pathways, emphasizing network width augmentation to enhance efficiency. The proposed model addresses potential biases associated with skin conditions, particularly in individuals with darker skin tones or excessive hair, by incorporating feature fusion to assimilate insights from diverse datasets. Extensive experiments were conducted using publicly accessible datasets to evaluate SWNet's effectiveness.This study utilized four datasets-Mnist-HAM10000, ISIC2019, ISIC2020, and Melanoma Skin Cancer-comprising skin cancer images categorized into benign and malignant classes. Explainable Artificial Intelligence (XAI) techniques, specifically Grad-CAM, were employed to enhance the interpretability of the model's decisions. Comparative analysis was performed with three pre-existing deep learning networks-EfficientNet, MobileNet, and Darknet. The results demonstrate SWNet's superiority, achieving an accuracy of 99.86% and an F1 score of 99.95%, underscoring its efficacy in gradient propagation and feature capture across various levels. This research highlights the significant potential of SWNet in advancing skin cancer detection and classification, providing a robust tool for accurate and early diagnosis. The integration of feature fusion enhances accuracy and mitigates biases associated with hair and skin tones. The outcomes of this study contribute to improved patient outcomes and healthcare practices, showcasing SWNet's exceptional capabilities in skin cancer detection and classification.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"48"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11786435/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02889-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper introduces SkinWiseNet (SWNet), a deep convolutional neural network designed for the detection and automatic classification of potentially malignant skin cancer conditions. SWNet optimizes feature extraction through multiple pathways, emphasizing network width augmentation to enhance efficiency. The proposed model addresses potential biases associated with skin conditions, particularly in individuals with darker skin tones or excessive hair, by incorporating feature fusion to assimilate insights from diverse datasets. Extensive experiments were conducted using publicly accessible datasets to evaluate SWNet's effectiveness.This study utilized four datasets-Mnist-HAM10000, ISIC2019, ISIC2020, and Melanoma Skin Cancer-comprising skin cancer images categorized into benign and malignant classes. Explainable Artificial Intelligence (XAI) techniques, specifically Grad-CAM, were employed to enhance the interpretability of the model's decisions. Comparative analysis was performed with three pre-existing deep learning networks-EfficientNet, MobileNet, and Darknet. The results demonstrate SWNet's superiority, achieving an accuracy of 99.86% and an F1 score of 99.95%, underscoring its efficacy in gradient propagation and feature capture across various levels. This research highlights the significant potential of SWNet in advancing skin cancer detection and classification, providing a robust tool for accurate and early diagnosis. The integration of feature fusion enhances accuracy and mitigates biases associated with hair and skin tones. The outcomes of this study contribute to improved patient outcomes and healthcare practices, showcasing SWNet's exceptional capabilities in skin cancer detection and classification.
期刊介绍:
BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.