Optimizing hypoglycaemia prediction in type 1 diabetes with Ensemble Machine Learning modeling.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Daphne N Katsarou, Eleni I Georga, Maria A Christou, Panagiota A Christou, Stelios Tigas, Costas Papaloukas, Dimitrios I Fotiadis
{"title":"Optimizing hypoglycaemia prediction in type 1 diabetes with Ensemble Machine Learning modeling.","authors":"Daphne N Katsarou, Eleni I Georga, Maria A Christou, Panagiota A Christou, Stelios Tigas, Costas Papaloukas, Dimitrios I Fotiadis","doi":"10.1186/s12911-025-02867-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Type 1 diabetes (T1D) is a chronic endocrine disorder characterized by high blood glucose levels, impacting millions of people globally. Its management requires intensive insulin therapy, frequent blood glucose monitoring, and lifestyle adjustments. The accurate prediction of the short-term course of glucose levels in the subcutaneous space in T1D people, as measured by a continuous glucose monitoring (CGM) system, is essential for improving glucose control by avoiding harmful hypoglycaemic and hyperglycaemic glucose swings, facilitating precise insulin management and individualized care and, in turn, minimizing long-term vascular complications.</p><p><strong>Methods: </strong>In this study, we propose an ensemble univariate short-term predictive model of the subcutaneous glucose concentration in T1D targeting at improving its error in the hypoglycaemic region. As such, the underlying basis functions are selected to minimize the percentage of erroneous predictions (EP) in the hypoglycaemic region, with EP being evaluated with continuous glucose error grid analysis (CG-EGA). The dataset comprises 29 individuals with T1D, who were monitored for 2 to 4 weeks during the GlucoseML prospective observational clinical study.</p><p><strong>Results: </strong>Among six different basis models (i.e., linear regression (LR), automatic relevance determination (ARD), support vector regression (SVR), Gaussian process regression (GPR), eXtreme gradient boosting (XGBoost), and long short-term memory (LSTM)), XGBoost and SVR showed a dominant performance in the hypoglycaemic region and were selected as the constituent basis models of the ensemble model. The results indicate that the ensemble model significantly reduces the percentage of EP in the hypoglycaemic region for a 30 min prediction horizon to 19% as compared with its individual basis models (i.e., XGBoost and SVR), whilst its errors over the entire glucose range (hypoglycaemia, euglycaemia, and hyperglycaemia) are similar to those of the basis models.</p><p><strong>Conclusions: </strong>The consideration of the performance of the basis functions in the hypoglycaemic region during the construction of the ensemble model contributes to enhancing their joint performance in that specific area. This could lead to more precise insulin management and a reduced risk of short-term hypoglycaemic fluctuations.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"46"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11783934/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02867-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Type 1 diabetes (T1D) is a chronic endocrine disorder characterized by high blood glucose levels, impacting millions of people globally. Its management requires intensive insulin therapy, frequent blood glucose monitoring, and lifestyle adjustments. The accurate prediction of the short-term course of glucose levels in the subcutaneous space in T1D people, as measured by a continuous glucose monitoring (CGM) system, is essential for improving glucose control by avoiding harmful hypoglycaemic and hyperglycaemic glucose swings, facilitating precise insulin management and individualized care and, in turn, minimizing long-term vascular complications.

Methods: In this study, we propose an ensemble univariate short-term predictive model of the subcutaneous glucose concentration in T1D targeting at improving its error in the hypoglycaemic region. As such, the underlying basis functions are selected to minimize the percentage of erroneous predictions (EP) in the hypoglycaemic region, with EP being evaluated with continuous glucose error grid analysis (CG-EGA). The dataset comprises 29 individuals with T1D, who were monitored for 2 to 4 weeks during the GlucoseML prospective observational clinical study.

Results: Among six different basis models (i.e., linear regression (LR), automatic relevance determination (ARD), support vector regression (SVR), Gaussian process regression (GPR), eXtreme gradient boosting (XGBoost), and long short-term memory (LSTM)), XGBoost and SVR showed a dominant performance in the hypoglycaemic region and were selected as the constituent basis models of the ensemble model. The results indicate that the ensemble model significantly reduces the percentage of EP in the hypoglycaemic region for a 30 min prediction horizon to 19% as compared with its individual basis models (i.e., XGBoost and SVR), whilst its errors over the entire glucose range (hypoglycaemia, euglycaemia, and hyperglycaemia) are similar to those of the basis models.

Conclusions: The consideration of the performance of the basis functions in the hypoglycaemic region during the construction of the ensemble model contributes to enhancing their joint performance in that specific area. This could lead to more precise insulin management and a reduced risk of short-term hypoglycaemic fluctuations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信