Yuan Shi, Changhao Deng, Xiangyin Lu, Yan Wang, Yaowen Pan, Deding Su, Wang Lu, Yuxiang Lin, Rui Li, Junnan Han, Yanwei Hao, Yi Chen, Ghassen Abid, Julien Pirrello, Mondher Bouzayen, Yudong Liu, Zhengguo Li, Baowen Huang
{"title":"Cutin formation in tomato is controlled by a multipartite module of synergistic and antagonistic transcription factors.","authors":"Yuan Shi, Changhao Deng, Xiangyin Lu, Yan Wang, Yaowen Pan, Deding Su, Wang Lu, Yuxiang Lin, Rui Li, Junnan Han, Yanwei Hao, Yi Chen, Ghassen Abid, Julien Pirrello, Mondher Bouzayen, Yudong Liu, Zhengguo Li, Baowen Huang","doi":"10.1016/j.celrep.2025.115258","DOIUrl":null,"url":null,"abstract":"<p><p>Cuticles protect plants from water loss and pathogen attack. We address here the functional significance of SlGRAS9, SlZHD17, and SlMBP3 in regulating cutin formation in tomato fruit. The study unveils the role of the multipartite \"SlGRAS9-SlZHD17-SlMBP3-SlMIXTA-like\" transcription factor module in cutin biosynthesis. Plants deficient in SlGRAS9, SlZHD17, or SlMBP3 exhibit thickened cuticles and a higher accumulation of cutin monomers, conferring extended fruit shelf life and higher tolerance to postharvest fungal infection. SlGRAS9 regulation of cutin is mediated by SlZHD17, a negative regulator of SlCYP86A69. SlZHD17 acts synergistically with SlMBP3 to repress SlCYP86A69, and its interaction with SlMIXTA-like prevents the binding to the SlCYP86A69 promoter, thereby releasing the repression of cutin biosynthesis. SlZHD17 and SlMBP3 synergistically repress cutin biosynthesis, while SlMIXTA-like and SlCD2 act antagonistically to SlZHD17 and SlMBP3 on this metabolic pathway. The study defines targets for breeding strategies aimed at improving cuticle-associated traits in tomato and potentially other crops.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 2","pages":"115258"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.115258","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cuticles protect plants from water loss and pathogen attack. We address here the functional significance of SlGRAS9, SlZHD17, and SlMBP3 in regulating cutin formation in tomato fruit. The study unveils the role of the multipartite "SlGRAS9-SlZHD17-SlMBP3-SlMIXTA-like" transcription factor module in cutin biosynthesis. Plants deficient in SlGRAS9, SlZHD17, or SlMBP3 exhibit thickened cuticles and a higher accumulation of cutin monomers, conferring extended fruit shelf life and higher tolerance to postharvest fungal infection. SlGRAS9 regulation of cutin is mediated by SlZHD17, a negative regulator of SlCYP86A69. SlZHD17 acts synergistically with SlMBP3 to repress SlCYP86A69, and its interaction with SlMIXTA-like prevents the binding to the SlCYP86A69 promoter, thereby releasing the repression of cutin biosynthesis. SlZHD17 and SlMBP3 synergistically repress cutin biosynthesis, while SlMIXTA-like and SlCD2 act antagonistically to SlZHD17 and SlMBP3 on this metabolic pathway. The study defines targets for breeding strategies aimed at improving cuticle-associated traits in tomato and potentially other crops.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.