Neural-symbolic hybrid model for myosin complex in cardiac ventriculum decodes structural bases for inheritable heart disease from its genetic encoding

IF 3.8 3区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
Thomas P. Burghardt
{"title":"Neural-symbolic hybrid model for myosin complex in cardiac ventriculum decodes structural bases for inheritable heart disease from its genetic encoding","authors":"Thomas P. Burghardt","doi":"10.1016/j.abb.2025.110323","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Human ventriculum myosin (βmys) powers contraction sometimes in complex with myosin binding protein C (MYBPC3). The latter regulates βmys activity and impacts cardiac function. Single residue variants (SRVs) change protein sequence in βmys or MYBPC3 causing inheritable heart diseases by affecting the βmys/MYBPC3 complex. Muscle genetics encode instructions for contraction informing native protein construction, functional integration, and inheritable disease impairment. A digital model decodes these instructions and evolves by processing new information content from diverse data modalities using a human partner-driven virtuous cycle optimization.</div></div><div><h3>Methods</h3><div>A general neural-network contraction model characterizes SRV impacts on human health. It rationalizes phenotype and pathogenicity assignment given the SRVs characteristics and, in this sense, decodes βmys/MYBPC3 complex genetics and implicitly captures ventricular muscle functionality. When an SRV modified domain locates to an inter-protein contact in βmys/MYBPC3 it affects complex coordination. Domains involved, one in βmys and the other in MYBPC3, form coordinated domains (co-domains). Bilateral co-domains imply potential for their SRV modification probabilities to respond jointly to a common perturbation revealing location. Human genetic diversity from the serial founder effect is the common systemic perturbation coupling co-domains subsequently mapped by a method called 2-dimensional correlation genetics (2D-CG).</div></div><div><h3>Results</h3><div>Interpreting general neural-network contraction model output involves 2D-CG co-domain mapping providing structural insights with natural language expression. It aligns machine-learned intelligence from the neural network model with human provided structural insight from the 2D-CG map, and other data from the literature, to form a neural-symbolic hybrid model integrating genetic and protein-interaction data into a nascent digital twin. The process forms a template for combining new information content from diverse data modalities into an evolving digital model. This nascent digital twin interprets SRV implications for disease mechanism discovery.</div></div>","PeriodicalId":8174,"journal":{"name":"Archives of biochemistry and biophysics","volume":"765 ","pages":"Article 110323"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of biochemistry and biophysics","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003986125000360","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Human ventriculum myosin (βmys) powers contraction sometimes in complex with myosin binding protein C (MYBPC3). The latter regulates βmys activity and impacts cardiac function. Single residue variants (SRVs) change protein sequence in βmys or MYBPC3 causing inheritable heart diseases by affecting the βmys/MYBPC3 complex. Muscle genetics encode instructions for contraction informing native protein construction, functional integration, and inheritable disease impairment. A digital model decodes these instructions and evolves by processing new information content from diverse data modalities using a human partner-driven virtuous cycle optimization.

Methods

A general neural-network contraction model characterizes SRV impacts on human health. It rationalizes phenotype and pathogenicity assignment given the SRVs characteristics and, in this sense, decodes βmys/MYBPC3 complex genetics and implicitly captures ventricular muscle functionality. When an SRV modified domain locates to an inter-protein contact in βmys/MYBPC3 it affects complex coordination. Domains involved, one in βmys and the other in MYBPC3, form coordinated domains (co-domains). Bilateral co-domains imply potential for their SRV modification probabilities to respond jointly to a common perturbation revealing location. Human genetic diversity from the serial founder effect is the common systemic perturbation coupling co-domains subsequently mapped by a method called 2-dimensional correlation genetics (2D-CG).

Results

Interpreting general neural-network contraction model output involves 2D-CG co-domain mapping providing structural insights with natural language expression. It aligns machine-learned intelligence from the neural network model with human provided structural insight from the 2D-CG map, and other data from the literature, to form a neural-symbolic hybrid model integrating genetic and protein-interaction data into a nascent digital twin. The process forms a template for combining new information content from diverse data modalities into an evolving digital model. This nascent digital twin interprets SRV implications for disease mechanism discovery.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Archives of biochemistry and biophysics
Archives of biochemistry and biophysics 生物-生化与分子生物学
CiteScore
7.40
自引率
0.00%
发文量
245
审稿时长
26 days
期刊介绍: Archives of Biochemistry and Biophysics publishes quality original articles and reviews in the developing areas of biochemistry and biophysics. Research Areas Include: • Enzyme and protein structure, function, regulation. Folding, turnover, and post-translational processing • Biological oxidations, free radical reactions, redox signaling, oxygenases, P450 reactions • Signal transduction, receptors, membrane transport, intracellular signals. Cellular and integrated metabolism.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信