{"title":"Isolation of lignocellulosic biomass-degrading bacteria from Porcellio dilatatus gut-enriched cultures","authors":"Catarina Coelho, Lígia O. Martins, Igor Tiago","doi":"10.1007/s00253-025-13420-6","DOIUrl":null,"url":null,"abstract":"<p>The lignocellulosic biomass (LCB) is an attractive, sustainable, and environmentally friendly alternative to fossil sources to produce biofuel, biomaterials, and biochemicals. However, its recalcitrant and heterogenous structure challenges its biodegradation and valorization. The gut microbiome of soil invertebrate species has emerged as a rich source of LCB-degrading bacteria and enzymes in terrestrial ecosystems. The primary objective of this investigation was to identify the bacterial communities within the <i>Porcellio dilatatus</i> gut (<i>Crustacea: Isopods</i>), to obtain enriched cultures, and to identify bacterial isolates with LCB-degrading activity. A total of 112 enriched cultures were screened, all exhibiting xylanolytic activity. Among them, 94 displayed cellulolytic activity, 30 showed chitinolytic activity, and 21 demonstrated ligninolytic activity. Four enriched cultures were selected, and 128 bacteria with cellulolytic, xylanolytic, chitinolytic, or ligninolytic activity were isolated and taxonomically classified. The obtained results reinforce the potential of bacterial communities within the digestive tract of soil invertebrates as a valuable source of lignocellulose-degrading microorganisms. Thirty-one isolates underwent in-depth enzymatic characterization, and five were selected and functionally evaluated. An artificial bacterial consortium was constructed to assess the potential benefits of using consortia to achieve enhanced LCB degradation. The positive results of this proof-of-concept artificial consortium (PdG-AC) can be used in future applications and is a valuable tool for enzymatic and microbial consortia engineering by, e.g., changing growth conditions for enhanced LCB-degrading abilities.</p><p><i>• The gut microbiome of Porcellio dilatatus was characterized.</i></p><p><i>• Porcellio dilatatus gut hosts many lignocellulose-degrading bacteria.</i></p><p><i>• Developed an artificial bacterial consortium for lignocellulose degradation.</i></p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00253-025-13420-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00253-025-13420-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The lignocellulosic biomass (LCB) is an attractive, sustainable, and environmentally friendly alternative to fossil sources to produce biofuel, biomaterials, and biochemicals. However, its recalcitrant and heterogenous structure challenges its biodegradation and valorization. The gut microbiome of soil invertebrate species has emerged as a rich source of LCB-degrading bacteria and enzymes in terrestrial ecosystems. The primary objective of this investigation was to identify the bacterial communities within the Porcellio dilatatus gut (Crustacea: Isopods), to obtain enriched cultures, and to identify bacterial isolates with LCB-degrading activity. A total of 112 enriched cultures were screened, all exhibiting xylanolytic activity. Among them, 94 displayed cellulolytic activity, 30 showed chitinolytic activity, and 21 demonstrated ligninolytic activity. Four enriched cultures were selected, and 128 bacteria with cellulolytic, xylanolytic, chitinolytic, or ligninolytic activity were isolated and taxonomically classified. The obtained results reinforce the potential of bacterial communities within the digestive tract of soil invertebrates as a valuable source of lignocellulose-degrading microorganisms. Thirty-one isolates underwent in-depth enzymatic characterization, and five were selected and functionally evaluated. An artificial bacterial consortium was constructed to assess the potential benefits of using consortia to achieve enhanced LCB degradation. The positive results of this proof-of-concept artificial consortium (PdG-AC) can be used in future applications and is a valuable tool for enzymatic and microbial consortia engineering by, e.g., changing growth conditions for enhanced LCB-degrading abilities.
• The gut microbiome of Porcellio dilatatus was characterized.
• Porcellio dilatatus gut hosts many lignocellulose-degrading bacteria.
• Developed an artificial bacterial consortium for lignocellulose degradation.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.