Numerical simulation study on drag reduction performance of streamline collective model on plane

IF 1.8 4区 物理与天体物理 Q4 CHEMISTRY, PHYSICAL
Guanghao Li, Gongbo Li, Xin Fang, Guijie Liu
{"title":"Numerical simulation study on drag reduction performance of streamline collective model on plane","authors":"Guanghao Li,&nbsp;Gongbo Li,&nbsp;Xin Fang,&nbsp;Guijie Liu","doi":"10.1140/epje/s10189-025-00473-8","DOIUrl":null,"url":null,"abstract":"<div><p>The energy carried by underwater vehicles is primarily employed to overcome water resistance. Reducing resistance can significantly enhance the speed and endurance of underwater vehicles. This study draws inspiration from biomimicry principles and proposes a novel drag reduction method inspired by the structural dynamics of fish schools. Building upon the structure of fish school, a collective model of streamlined forms is established. These streamlined collective models are arranged on a plane, and the study investigates the impact of various streamlined collective structures on planar resistance. By changing the spacing of the streamline collective model and flow field velocity, the drag reduction rules of different models at different flow rates are obtained. Through flow field analysis, the mechanism through which streamlined collective models achieve drag reduction on a flat surface is revealed. The research indicates that the streamlined collective models reduce total resistance by diminishing the viscous drag on the flat plate. The drag reduction effect generally decreases and then increases as the lateral spacing of the streamlined collective model increases. The maximum drag reduction rate can reach up to 8.63%. This study provides a novel approach for drag reduction in underwater vehicles, paving the way for further exploration and application development in this field.</p><h3>Graphical abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":790,"journal":{"name":"The European Physical Journal E","volume":"48 2","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal E","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epje/s10189-025-00473-8","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The energy carried by underwater vehicles is primarily employed to overcome water resistance. Reducing resistance can significantly enhance the speed and endurance of underwater vehicles. This study draws inspiration from biomimicry principles and proposes a novel drag reduction method inspired by the structural dynamics of fish schools. Building upon the structure of fish school, a collective model of streamlined forms is established. These streamlined collective models are arranged on a plane, and the study investigates the impact of various streamlined collective structures on planar resistance. By changing the spacing of the streamline collective model and flow field velocity, the drag reduction rules of different models at different flow rates are obtained. Through flow field analysis, the mechanism through which streamlined collective models achieve drag reduction on a flat surface is revealed. The research indicates that the streamlined collective models reduce total resistance by diminishing the viscous drag on the flat plate. The drag reduction effect generally decreases and then increases as the lateral spacing of the streamlined collective model increases. The maximum drag reduction rate can reach up to 8.63%. This study provides a novel approach for drag reduction in underwater vehicles, paving the way for further exploration and application development in this field.

Graphical abstract

流线集体模型在平面上减阻性能的数值模拟研究。
水下航行器所携带的能量主要用于克服水阻力。减小阻力可以显著提高水下航行器的航速和续航能力。本研究从仿生学原理中获得灵感,并提出了一种受鱼群结构动力学启发的新型减阻方法。在鱼群结构的基础上,建立了一个流线型的集体模型。这些流线型集体模型布置在一个平面上,研究了各种流线型集体结构对平面阻力的影响。通过改变流线集体模型的间距和流场速度,得到了不同模型在不同流量下的减阻规律。通过流场分析,揭示了流线型集体模型在平面上实现减阻的机理。研究表明,流线型集体模型通过减小平板上的粘性阻力来减小总阻力。减阻效果一般随流线型集体模型横向间距的增大先减小后增大。最大减阻率可达8.63%。该研究为水下航行器减阻提供了一种新的方法,为该领域的进一步探索和应用开发铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The European Physical Journal E
The European Physical Journal E CHEMISTRY, PHYSICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
2.60
自引率
5.60%
发文量
92
审稿时长
3 months
期刊介绍: EPJ E publishes papers describing advances in the understanding of physical aspects of Soft, Liquid and Living Systems. Soft matter is a generic term for a large group of condensed, often heterogeneous systems -- often also called complex fluids -- that display a large response to weak external perturbations and that possess properties governed by slow internal dynamics. Flowing matter refers to all systems that can actually flow, from simple to multiphase liquids, from foams to granular matter. Living matter concerns the new physics that emerges from novel insights into the properties and behaviours of living systems. Furthermore, it aims at developing new concepts and quantitative approaches for the study of biological phenomena. Approaches from soft matter physics and statistical physics play a key role in this research. The journal includes reports of experimental, computational and theoretical studies and appeals to the broad interdisciplinary communities including physics, chemistry, biology, mathematics and materials science.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信